cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 195 results. Next

A246351 Numbers k such that A048673(k) < k.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 22, 23, 29, 31, 34, 37, 38, 41, 43, 46, 47, 51, 53, 55, 58, 59, 61, 62, 65, 67, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119, 121, 122, 123, 127, 129, 131, 133, 134, 137, 139, 141, 142, 143, 145, 146, 149, 151, 155, 157, 158, 159
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

The growth rate of the sequence seems to converge:
a(100) = 217
a(1000) = 2231
a(10000) = 21535
a(100000) = 214647
a(1000000) = 2155903
a(10000000) = 21553153
Please see comments in A246282.

Crossrefs

Complement: A246352.
Setwise difference of A246281 and A048674.

Programs

  • PARI
    default(primelimit, 2^22);
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
    A048673(n) = (A003961(n)+1)/2;
    isA246351(n) = (A048673(n) < n);
    n = 0; i = 0; while(i < 10000, n++; if(isA246351(n), i++; write("b246351.txt", i, " ", n)));
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A246351 (MATCHING-POS 1 1 (lambda (n) (< (A048673 n) n))))

A304759 Binary encoding of 1-digits in ternary representation of A048673(n).

Original entry on oeis.org

1, 0, 2, 2, 3, 0, 0, 6, 7, 4, 1, 2, 4, 4, 0, 14, 5, 12, 6, 10, 9, 0, 4, 6, 1, 0, 4, 10, 5, 8, 1, 30, 8, 8, 14, 26, 2, 8, 13, 22, 3, 16, 0, 2, 17, 12, 8, 14, 1, 0, 10, 2, 10, 0, 9, 22, 3, 8, 11, 18, 9, 0, 18, 62, 0, 20, 12, 18, 1, 24, 13, 54, 15, 0, 28, 18, 0, 24, 12, 46, 37, 4, 8, 34, 7, 4, 0, 6, 11, 32, 23, 26, 22, 0
Offset: 1

Views

Author

Antti Karttunen, May 30 2018

Keywords

Comments

Compare the logarithmic scatterplot to those of A291759, A292250 and A304760.

Crossrefs

Cf. A048673, A289813, A304758 (rgs-transform), A340381.
Cf. A340376 (positions of zeros), A340378 (binary weight).

Programs

Formula

a(n) = A289813(A048673(n)).

A243501 Permutation of even numbers: a(n) = 2*A048673(n).

Original entry on oeis.org

2, 4, 6, 10, 8, 16, 12, 28, 26, 22, 14, 46, 18, 34, 36, 82, 20, 76, 24, 64, 56, 40, 30, 136, 50, 52, 126, 100, 32, 106, 38, 244, 66, 58, 78, 226, 42, 70, 86, 190, 44, 166, 48, 118, 176, 88, 54, 406, 122, 148, 96, 154, 60, 376, 92, 298, 116, 94, 62, 316, 68, 112, 276, 730, 120
Offset: 1

Views

Author

Antti Karttunen, Jul 21 2014

Keywords

Crossrefs

Formula

a(n) = 2*A048673(n).
a(n) = A003961(n) + 1.
a(n) = A243502(A245447(n)).

A246352 Numbers n such that A048673(n) >= n.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 26, 27, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 49, 50, 52, 54, 56, 57, 60, 63, 64, 66, 68, 69, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 91, 92, 93, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 125, 126, 128, 130, 132
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Crossrefs

Complement: A246351
Union of A246282 and A048674.
Subsequence: A029744 (gives the positions of records in A048673).
Cf. A246372.

Programs

  • PARI
    default(primelimit, 2^22);
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
    A048673(n) = (A003961(n)+1)/2;
    isA246352(n) = (A048673(n) >= n);
    n = 0; i = 0; while(i < 10000, n++; if(isA246352(n), i++; write("b246352.txt", i, " ", n)));
    (Scheme, with Antti Karttunen's IntSeq-library)
    (define A246352 (MATCHING-POS 1 1 (lambda (n) (>= (A048673 n) n))))

A253889 a(n) = A048673(floor(A064216(n)/2)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 3, 8, 14, 4, 13, 5, 5, 7, 17, 6, 6, 18, 7, 38, 32, 8, 28, 23, 9, 15, 11, 10, 26, 16, 11, 41, 53, 12, 33, 39, 13, 10, 113, 14, 43, 12, 15, 22, 63, 16, 25, 59, 17, 203, 74, 18, 48, 30, 19, 188, 50, 20, 122, 68, 21, 9, 149, 22, 138, 83, 23, 60, 86, 24, 35, 29, 25, 73, 62, 26, 24, 123, 27, 27, 128, 28, 313
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2015

Keywords

Comments

When A048673 is represented as a binary tree, then any non-root node k (>= 2) which contains value n = A048673(k) has as its parent a(n) = A048673(floor(k/2)).

Crossrefs

Programs

  • Mathematica
    f[n_] := Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1]; g[n_] := (Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n; Array[Floor@ g[Floor[f[#]/2]] &, 84] (* Michael De Vlieger, Sep 16 2017 *)
  • Scheme
    (define (A253889 n) (A048673 (floor->exact (/ (A064216 n) 2))))

Formula

a(n) = A048673(floor(A064216(n)/2)).
Other identities. For all n >= 0:
a(3n+2) = n+1.

A286585 a(n) = A053735(A048673(n)).

Original entry on oeis.org

1, 2, 1, 3, 2, 4, 2, 4, 3, 3, 3, 5, 1, 5, 2, 5, 2, 4, 2, 4, 2, 4, 3, 6, 5, 6, 3, 6, 4, 7, 3, 6, 3, 3, 3, 5, 3, 5, 5, 5, 4, 3, 4, 5, 4, 6, 1, 7, 5, 6, 4, 7, 2, 8, 4, 7, 4, 5, 3, 8, 4, 4, 4, 7, 4, 6, 2, 4, 5, 6, 3, 6, 4, 6, 5, 6, 4, 6, 4, 6, 7, 5, 3, 4, 5, 7, 6, 6, 5, 5, 4, 7, 3, 8, 1, 8, 5, 6, 3, 7, 6, 7, 2, 8
Offset: 1

Views

Author

Antti Karttunen, May 31 2017

Keywords

Crossrefs

Programs

  • Python
    from sympy.ntheory.factor_ import digits
    from sympy import factorint, nextprime
    from operator import mul
    def a053735(n): return sum(digits(n, 3)[1:])
    def a048673(n):
        f = factorint(n)
        return 1 if n==1 else (1 + reduce(mul, [nextprime(i)**f[i] for i in f]))//2
    def a(n): return a053735(a048673(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 12 2017
  • Scheme
    (define (A286585 n) (A053735 (A048673 n)))
    

Formula

a(n) = A053735(A048673(n)).
For all n >= 0, a(A000079(n)) = n+1.

A323893 Dirichlet inverse of A048673, where A048673(n) = (A003961(n)+1) / 2, and A003961 is fully multiplicative with a(prime(i)) = prime(i+1).

Original entry on oeis.org

1, -2, -3, -1, -4, 4, -6, -2, -4, 5, -7, 3, -9, 7, 6, -4, -10, 8, -12, 4, 8, 8, -15, 8, -9, 10, -12, 6, -16, 5, -19, -8, 9, 11, 9, 8, -21, 13, 11, 11, -22, 11, -24, 7, 16, 16, -27, 20, -25, 18, 12, 9, -30, 32, 10, 17, 14, 17, -31, 6, -34, 20, 24, -16, 12, 14, -36, 10, 17, 20, -37, 16, -40, 22, 27, 12, 12, 20, -42, 28, -36, 23, -45, 12, 13
Offset: 1

Views

Author

Antti Karttunen, Feb 08 2019

Keywords

Crossrefs

Cf. A003961, A048673, A323894, A349134, A378520 (Möbius transform).

Programs

  • PARI
    up_to = 20000;
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A048673(n) = (A003961(n)+1)/2;
    v323893 = DirInverse(vector(up_to,n,A048673(n)));
    A323893(n) = v323893[n];
    
  • PARI
    memoA323893 = Map();
    A323893(n) = if(1==n,1,my(v); if(mapisdefined(memoA323893,n,&v), v, v = -sumdiv(n,d,if(dA048673(n/d)*A323893(d),0)); mapput(memoA323893,n,v); (v))); \\ Antti Karttunen, Nov 30 2024

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA048673(n/d) * a(d).
a(n) = A349134(A003961(n)). - Antti Karttunen, Nov 30 2024

A278224 a(n) = A046523(A048673(n)).

Original entry on oeis.org

1, 2, 2, 2, 4, 8, 6, 6, 2, 2, 2, 2, 4, 2, 12, 2, 6, 6, 12, 32, 12, 12, 6, 12, 4, 6, 12, 12, 16, 2, 2, 6, 6, 2, 6, 2, 6, 6, 2, 6, 6, 2, 24, 2, 24, 12, 8, 6, 2, 6, 48, 6, 30, 12, 6, 2, 6, 2, 2, 6, 6, 24, 30, 6, 60, 12, 36, 6, 2, 12, 2, 12, 24, 6, 6, 24, 72, 128, 30, 12, 2, 6, 12, 24, 2, 2, 30, 48, 4, 2, 6, 2, 6, 48, 16, 96, 6, 30, 2, 6, 12, 6, 24, 30, 2, 2, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence works as a "sentinel" for sequence A048673 by matching to any other sequence that is obtained as f(A048673(n)), where f(n) is any function that depends only on the prime signature of n (see the index entry for "sequences computed from exponents in ..."). As of Nov 11 2016 no such sequences were present in the database.

Crossrefs

Programs

  • Python
    from sympy import factorint, nextprime
    from operator import mul
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a048673(n):
        f = factorint(n)
        return 1 if n==1 else (1 + reduce(mul, [nextprime(i)**f[i] for i in f]))//2
    def a(n): return a046523(a048673(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 12 2017
  • Scheme
    (define (A278224 n) (A046523 (A048673 n)))
    

Formula

a(n) = A046523(A048673(n)).

A292247 a(n) = A292244(A048673(n)).

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 3, 0, 0, 0, 0, 4, 5, 6, 7, 0, 0, 0, 1, 0, 0, 0, 1, 8, 8, 10, 11, 12, 12, 14, 14, 0, 1, 0, 1, 0, 1, 2, 2, 0, 0, 0, 1, 0, 0, 2, 3, 16, 16, 16, 17, 20, 21, 22, 22, 24, 24, 24, 24, 28, 28, 28, 29, 0, 1, 2, 3, 0, 0, 2, 2, 0, 0, 2, 3, 4, 5, 4, 5, 0, 0, 0, 1, 0, 0, 2, 3, 0, 0, 0, 0, 4, 5, 6, 7, 32, 33, 32, 32, 32, 32, 34, 35, 40, 40
Offset: 1

Views

Author

Antti Karttunen, Sep 16 2017

Keywords

Crossrefs

Formula

a(n) = A292244(A048673(n)).
a(n) + A292248(n) = n.

A292248 a(n) = A292245(A048673(n)).

Original entry on oeis.org

1, 2, 2, 4, 5, 4, 4, 8, 9, 10, 11, 8, 8, 8, 8, 16, 17, 18, 18, 20, 21, 22, 22, 16, 17, 16, 16, 16, 17, 16, 17, 32, 32, 34, 34, 36, 36, 36, 37, 40, 41, 42, 42, 44, 45, 44, 44, 32, 33, 34, 34, 32, 32, 32, 33, 32, 33, 34, 35, 32, 33, 34, 34, 64, 64, 64, 64, 68, 69, 68, 69, 72, 73, 72, 72, 72, 72, 74, 74, 80, 81, 82, 82, 84, 85, 84, 84, 88, 89, 90, 91
Offset: 1

Views

Author

Antti Karttunen, Sep 16 2017

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1]; g[n_] := (Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n; Map[FromDigits[#, 2] &[IntegerDigits[#, 3] /. 2 -> 0] &, Map[a, Array[g, 91]]] (* Michael De Vlieger, Sep 16 2017 *)

Formula

a(n) = A292245(A048673(n)).
a(n) + A292247(n) = n.
Previous Showing 11-20 of 195 results. Next