A306607 The bottom entry in the difference table of the binary digits of n.
0, 1, 1, 0, 1, 2, -1, 0, 1, 0, 4, 3, -2, -3, 1, 0, 1, 2, -3, -2, 7, 8, 3, 4, -3, -2, -7, -6, 3, 4, -1, 0, 1, 0, 6, 5, -9, -10, -4, -5, 11, 10, 16, 15, 1, 0, 6, 5, -4, -5, 1, 0, -14, -15, -9, -10, 6, 5, 11, 10, -4, -5, 1, 0, 1, 2, -5, -4, 16, 17, 10, 11, -19
Offset: 0
Examples
For n = 42: - the binary representation of 42 is "101010", - the corresponding difference table is: 0 1 0 1 0 1 1 -1 1 -1 1 -2 2 -2 2 4 -4 4 -8 8 16 - hence a(42) = 16.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Programs
-
Maple
f:= proc(n) local L; L:= convert(n,base,2); while nops(L) > 1 do L:= L[2..-1]-L[1..-2] od; op(L) end proc: map(f, [$0..100]); # Robert Israel, Mar 07 2019
-
Mathematica
a[n_] := NestWhile[Differences, Reverse[IntegerDigits[n, 2]], Length[#] > 1 &][[1]]; Array[a, 100, 0] (* Amiram Eldar, Mar 08 2019 *)
-
PARI
a(n) = if (n, my (v=Vecrev(binary(n))); while (#v>1, v=vector(#v-1, k, (v[k+1]-v[k]))); v[1], 0)
-
PARI
a(n) = my(b = binary(n), s = -1); sum(i = 1, #b, s=-s; binomial(#b-1, i-1) * b[i] * s) \\ David A. Corneth, Mar 07 2019
Formula
a(2^k) = 1 for any k >= 0.
a(2^k-1) = 0 for any k > 1.
a(3*2^k) = -k for any k >= 0.
a(n) = Sum_{k=0..A000523(n)} binomial(A000523(n), k)*(-1)^k*A030302(n,k). - David A. Corneth, Mar 07 2019
G.f.: 1/(x-1)*Sum_{k>=0}(x^(2^(k+1))-x^(2^k) + x^(2^k)/(x^(2^k)+1)*Sum_{m>=k+1}(binomial(m,k)*(-1)^(m-k)*(x^(2^(m+1))-x^(2^m)))). - Robert Israel, Mar 07 2019
Comments