A269590
One of the two successive approximations up to 5^n for the 5-adic integer sqrt(-4). These are the 4 mod 5 numbers (except for n=0).
Original entry on oeis.org
0, 4, 14, 114, 364, 989, 13489, 13489, 169739, 560364, 2513489, 2513489, 2513489, 246654114, 3908763489, 22219310364, 52736888489, 52736888489, 3104494700989, 6919191966614
Offset: 0
-
with(padic): D2:=op(3,op([evalp(RootOf(x^2+4),5,20)][2])):
0,seq(sum('D2[k]*5^(k-1)','k'=1..n),n=1..20);
# alternative program
a := proc(n) option remember; if n = 1 then 4 else irem( a(n-1)^5 + 5*a(n-1)^3 + 5*a(n-1), 5^n) end if; end: seq(a(n), n = 1..20); # Peter Bala, Nov 14 2022
-
a(n) = if (n==0, 0, 5^n - truncate(sqrt(-4+O(5^(n))))); \\ Michel Marcus, Mar 07 2016
A286877
One of the two successive approximations up to 17^n for 17-adic integer sqrt(-1). Here the 4 (mod 17) case (except for n=0).
Original entry on oeis.org
0, 4, 38, 2928, 27493, 1029745, 23747457, 313398285, 3596107669, 94280954402, 450044583893, 28673959190179, 28673959190179, 3524407382568745, 13428985415474682, 13428985415474682, 42949774758062711577, 91610966633729580058, 6709533061724423693474
Offset: 0
a(1) = ( 4)_17 = 4,
a(2) = ( 24)_17 = 38,
a(3) = ( A24)_17 = 2928,
a(4) = (5A24)_17 = 27493.
-
a(n) = truncate(sqrt(-1+O(17^n))); \\ Michel Marcus, Aug 04 2017
-
def A(k, m, n):
ary=[0]
a, mod = k, m
for i in range(n):
b=a%mod
ary.append(b)
a=b**m
mod*=m
return ary
def a286877(n):
return A(4, 17, n)
print(a286877(100)) # Indranil Ghosh, Aug 03 2017
-
def A(k, m, n)
ary = [0]
a, mod = k, m
n.times{
b = a % mod
ary << b
a = b ** m
mod *= m
}
ary
end
def A286877(n)
A(4, 17, n)
end
p A286877(100)
A286878
One of the two successive approximations up to 17^n for 17-adic integer sqrt(-1). Here the 13 (mod 17) case (except for n=0).
Original entry on oeis.org
0, 13, 251, 1985, 56028, 390112, 390112, 96940388, 3379649772, 24306922095, 1565949316556, 5597937117454, 553948278039582, 6380170650337192, 154948841143926247, 2848994066094341111, 5711417117604156904, 735629295252607184119, 7353551390343301297535
Offset: 0
a(1) = ( D)_17 = 13,
a(2) = ( ED)_17 = 251,
a(3) = ( 6ED)_17 = 1985,
a(4) = (B6ED)_17 = 56028.
-
a(n) = if (n, 17^n-truncate(sqrt(-1+O(17^n))), 0); \\ Michel Marcus, Aug 04 2017
-
def A(k, m, n):
ary=[0]
a, mod = k, m
for i in range(n):
b=a%mod
ary.append(b)
a=b**m
mod*=m
return ary
def a286878(n): return A(13, 17, n)
print(a286878(100)) # Indranil Ghosh, Aug 03 2017, after Ruby
-
def A(k, m, n)
ary = [0]
a, mod = k, m
n.times{
b = a % mod
ary << b
a = b ** m
mod *= m
}
ary
end
def A286878(n)
A(13, 17, n)
end
p A286878(100)
A309444
The successive approximations up to 5^n for 5-adic integer 4^(1/3).
Original entry on oeis.org
0, 4, 9, 59, 559, 3059, 12434, 59309, 371809, 371809, 8184309, 27715559, 76543684, 320684309, 1541387434, 25955449934, 86990606184, 392166387434, 2680984746809, 14125076543684, 52272049199934, 338374344121809, 2245722976934309, 7014094558965559, 42776881424199934
Offset: 0
a(1) = ( 4)_5 = 4,
a(2) = ( 14)_5 = 9,
a(3) = ( 214)_5 = 59,
a(4) = (4214)_5 = 559.
Expansions of p-adic integers:
A325485
One of the four successive approximations up to 5^n for the 5-adic integer 6^(1/4). This is the 2 (mod 5) case (except for n = 0).
Original entry on oeis.org
0, 2, 22, 22, 397, 397, 6647, 6647, 319147, 319147, 6178522, 6178522, 103834772, 592116022, 3033522272, 9137037897, 70172194147, 222760084772, 3274517897272, 3274517897272, 60494976881647, 441964703444147, 1395639019850397, 3779824810866022, 51463540631178522
Offset: 0
The unique number k in [1, 5^2] and congruent to 2 modulo 5 such that k^4 - 6 is divisible by 5^2 is k = 22, so a(2) = 22.
The unique number k in [1, 5^3] and congruent to 2 modulo 5 such that k^4 - 6 is divisible by 5^3 is also k = 22, so a(3) is also 22.
Approximations of p-adic fourth-power roots:
A324023
One of the two successive approximations up to 5^n for 5-adic integer sqrt(6). This is the 1 (mod 5) case (except for n = 0).
Original entry on oeis.org
0, 1, 16, 16, 516, 1766, 4891, 36141, 270516, 661141, 6520516, 35817391, 35817391, 768239266, 4430348641, 16637379891, 108190114266, 413365895516, 1939244801766, 9568639333016, 85862584645516, 371964879567391, 1802476354176766, 4186662145192391, 51870377965504891
Offset: 0
16^2 = 256 = 10*5^2 + 6 = 2*5^3 + 6;
516^2 = 266256 = 426*5^4 + 6;
1766^2 = 3118756 = 998*5^5 + 6.
Approximations of 5-adic square roots:
A324024
One of the two successive approximations up to 5^n for 5-adic integer sqrt(6). This is the 4 (mod 5) case (except for n = 0).
Original entry on oeis.org
0, 4, 9, 109, 109, 1359, 10734, 41984, 120109, 1291984, 3245109, 13010734, 208323234, 452463859, 1673166984, 13880198234, 44397776359, 349573557609, 1875452463859, 9504846995109, 9504846995109, 104872278635734, 581709436838859, 7734266809885734, 7734266809885734
Offset: 0
9^2 = 81 = 3*5^2 + 6;
109^2 = 11881 = 95*5^3 + 6 = 19*5^4 + 6;
1359^2 = 1846881 = 591*5^5 + 6.
Approximations of 5-adic square roots:
A325484
One of the four successive approximations up to 5^n for the 5-adic integer 6^(1/4). This is the 1 (mod 5) case (except for n = 0).
Original entry on oeis.org
0, 1, 21, 121, 246, 2121, 5246, 52121, 286496, 677121, 677121, 20208371, 117864621, 606145871, 3047552121, 3047552121, 94600286496, 704951848996, 2993770208371, 2993770208371, 79287715520871, 270022578802121, 746859737005246, 5515231319036496, 29357089229192746
Offset: 0
The unique number k in [1, 5^2] and congruent to 1 modulo 5 such that k^4 - 6 is divisible by 5^2 is k = 21, so a(2) = 21.
The unique number k in [1, 5^3] and congruent to 1 modulo 5 such that k^4 - 6 is divisible by 5^3 is k = 121, so a(3) = 121.
Approximations of p-adic fourth-power roots:
A325486
One of the four successive approximations up to 5^n for the 5-adic integer 6^(1/4). This is the 3 (mod 5) case (except for n = 0).
Original entry on oeis.org
0, 3, 3, 103, 228, 2728, 8978, 71478, 71478, 1633978, 3587103, 42649603, 140305853, 628587103, 3069993353, 21380540228, 82415696478, 540179368353, 540179368353, 15798968430853, 34872454758978, 34872454758978, 988546771165228, 8141104144212103, 8141104144212103
Offset: 0
The unique number k in [1, 5^2] and congruent to 3 modulo 5 such that k^4 - 6 is divisible by 5^2 is k = 3, so a(2) = 3.
The unique number k in [1, 5^3] and congruent to 3 modulo 5 such that k^4 - 6 is divisible by 5^3 is k = 103, so a(3) = 103.
Approximations of p-adic fourth-power roots:
A325487
One of the four successive approximations up to 13^n for the 13-adic integer 6^(1/4). This is the 4 (mod 5) case (except for n = 0).
Original entry on oeis.org
0, 4, 4, 4, 379, 1004, 10379, 26004, 104129, 1276004, 9088504, 28619754, 126276004, 614557254, 3055963504, 27470026004, 57987604129, 57987604129, 820927057254, 16079716119754, 16079716119754, 206814579401004, 1637326054010379, 6405697636041629, 30247555546197879
Offset: 0
The unique number k in [1, 5^2] and congruent to 4 modulo 5 such that k^4 - 6 is divisible by 5^2 is k = 4, so a(2) = 4.
The unique number k in [1, 5^3] and congruent to 4 modulo 5 such that k^4 - 6 is divisible by 5^3 is also k = 4, so a(3) is also 4.
Approximations of p-adic fourth-power roots:
Comments