A269590
One of the two successive approximations up to 5^n for the 5-adic integer sqrt(-4). These are the 4 mod 5 numbers (except for n=0).
Original entry on oeis.org
0, 4, 14, 114, 364, 989, 13489, 13489, 169739, 560364, 2513489, 2513489, 2513489, 246654114, 3908763489, 22219310364, 52736888489, 52736888489, 3104494700989, 6919191966614
Offset: 0
-
with(padic): D2:=op(3,op([evalp(RootOf(x^2+4),5,20)][2])):
0,seq(sum('D2[k]*5^(k-1)','k'=1..n),n=1..20);
# alternative program
a := proc(n) option remember; if n = 1 then 4 else irem( a(n-1)^5 + 5*a(n-1)^3 + 5*a(n-1), 5^n) end if; end: seq(a(n), n = 1..20); # Peter Bala, Nov 14 2022
-
a(n) = if (n==0, 0, 5^n - truncate(sqrt(-4+O(5^(n))))); \\ Michel Marcus, Mar 07 2016
A286877
One of the two successive approximations up to 17^n for 17-adic integer sqrt(-1). Here the 4 (mod 17) case (except for n=0).
Original entry on oeis.org
0, 4, 38, 2928, 27493, 1029745, 23747457, 313398285, 3596107669, 94280954402, 450044583893, 28673959190179, 28673959190179, 3524407382568745, 13428985415474682, 13428985415474682, 42949774758062711577, 91610966633729580058, 6709533061724423693474
Offset: 0
a(1) = ( 4)_17 = 4,
a(2) = ( 24)_17 = 38,
a(3) = ( A24)_17 = 2928,
a(4) = (5A24)_17 = 27493.
-
a(n) = truncate(sqrt(-1+O(17^n))); \\ Michel Marcus, Aug 04 2017
-
def A(k, m, n):
ary=[0]
a, mod = k, m
for i in range(n):
b=a%mod
ary.append(b)
a=b**m
mod*=m
return ary
def a286877(n):
return A(4, 17, n)
print(a286877(100)) # Indranil Ghosh, Aug 03 2017
-
def A(k, m, n)
ary = [0]
a, mod = k, m
n.times{
b = a % mod
ary << b
a = b ** m
mod *= m
}
ary
end
def A286877(n)
A(4, 17, n)
end
p A286877(100)
A286878
One of the two successive approximations up to 17^n for 17-adic integer sqrt(-1). Here the 13 (mod 17) case (except for n=0).
Original entry on oeis.org
0, 13, 251, 1985, 56028, 390112, 390112, 96940388, 3379649772, 24306922095, 1565949316556, 5597937117454, 553948278039582, 6380170650337192, 154948841143926247, 2848994066094341111, 5711417117604156904, 735629295252607184119, 7353551390343301297535
Offset: 0
a(1) = ( D)_17 = 13,
a(2) = ( ED)_17 = 251,
a(3) = ( 6ED)_17 = 1985,
a(4) = (B6ED)_17 = 56028.
-
a(n) = if (n, 17^n-truncate(sqrt(-1+O(17^n))), 0); \\ Michel Marcus, Aug 04 2017
-
def A(k, m, n):
ary=[0]
a, mod = k, m
for i in range(n):
b=a%mod
ary.append(b)
a=b**m
mod*=m
return ary
def a286878(n): return A(13, 17, n)
print(a286878(100)) # Indranil Ghosh, Aug 03 2017, after Ruby
-
def A(k, m, n)
ary = [0]
a, mod = k, m
n.times{
b = a % mod
ary << b
a = b ** m
mod *= m
}
ary
end
def A286878(n)
A(13, 17, n)
end
p A286878(100)
A210848
a(n) = (A048898(n)^2 + 1)/5^n, n >= 0.
Original entry on oeis.org
1, 1, 2, 26, 53, 1354, 13562, 26858, 200965, 40193, 3859882, 13496122, 62298370, 12459674, 4106065226, 4044371993, 69072101242, 218014644394, 3137550252170, 627510050434, 66696011833378, 280704828874769, 2167389209973245, 433477841994649, 41870795375097221, 40277856145834642
Offset: 0
a(0) = 1/1 = 1.
a(3) = (57^2 + 1)/5^3 = 26 (b(3) = 7^5 (mod 5^3) = 57).
- T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.
-
b:=proc(n) option remember: if n=0 then 0 elif n=1 then 2
else modp(b(n-1)^5,5^n) fi: end proc:
[seq((b(n)^2+1)/5^n,n=0..29)];
-
Join[{1}, MapIndexed[(#^2 + 1)/5^#2[[1]] &, FoldList[PowerMod[#, 5, 5^#2] &, 2, Range[2, 25]]]] (* Paolo Xausa, Jan 14 2025 *)
A309444
The successive approximations up to 5^n for 5-adic integer 4^(1/3).
Original entry on oeis.org
0, 4, 9, 59, 559, 3059, 12434, 59309, 371809, 371809, 8184309, 27715559, 76543684, 320684309, 1541387434, 25955449934, 86990606184, 392166387434, 2680984746809, 14125076543684, 52272049199934, 338374344121809, 2245722976934309, 7014094558965559, 42776881424199934
Offset: 0
a(1) = ( 4)_5 = 4,
a(2) = ( 14)_5 = 9,
a(3) = ( 214)_5 = 59,
a(4) = (4214)_5 = 559.
Expansions of p-adic integers:
A325485
One of the four successive approximations up to 5^n for the 5-adic integer 6^(1/4). This is the 2 (mod 5) case (except for n = 0).
Original entry on oeis.org
0, 2, 22, 22, 397, 397, 6647, 6647, 319147, 319147, 6178522, 6178522, 103834772, 592116022, 3033522272, 9137037897, 70172194147, 222760084772, 3274517897272, 3274517897272, 60494976881647, 441964703444147, 1395639019850397, 3779824810866022, 51463540631178522
Offset: 0
The unique number k in [1, 5^2] and congruent to 2 modulo 5 such that k^4 - 6 is divisible by 5^2 is k = 22, so a(2) = 22.
The unique number k in [1, 5^3] and congruent to 2 modulo 5 such that k^4 - 6 is divisible by 5^3 is also k = 22, so a(3) is also 22.
Approximations of p-adic fourth-power roots:
A324023
One of the two successive approximations up to 5^n for 5-adic integer sqrt(6). This is the 1 (mod 5) case (except for n = 0).
Original entry on oeis.org
0, 1, 16, 16, 516, 1766, 4891, 36141, 270516, 661141, 6520516, 35817391, 35817391, 768239266, 4430348641, 16637379891, 108190114266, 413365895516, 1939244801766, 9568639333016, 85862584645516, 371964879567391, 1802476354176766, 4186662145192391, 51870377965504891
Offset: 0
16^2 = 256 = 10*5^2 + 6 = 2*5^3 + 6;
516^2 = 266256 = 426*5^4 + 6;
1766^2 = 3118756 = 998*5^5 + 6.
Approximations of 5-adic square roots:
A324024
One of the two successive approximations up to 5^n for 5-adic integer sqrt(6). This is the 4 (mod 5) case (except for n = 0).
Original entry on oeis.org
0, 4, 9, 109, 109, 1359, 10734, 41984, 120109, 1291984, 3245109, 13010734, 208323234, 452463859, 1673166984, 13880198234, 44397776359, 349573557609, 1875452463859, 9504846995109, 9504846995109, 104872278635734, 581709436838859, 7734266809885734, 7734266809885734
Offset: 0
9^2 = 81 = 3*5^2 + 6;
109^2 = 11881 = 95*5^3 + 6 = 19*5^4 + 6;
1359^2 = 1846881 = 591*5^5 + 6.
Approximations of 5-adic square roots:
A325484
One of the four successive approximations up to 5^n for the 5-adic integer 6^(1/4). This is the 1 (mod 5) case (except for n = 0).
Original entry on oeis.org
0, 1, 21, 121, 246, 2121, 5246, 52121, 286496, 677121, 677121, 20208371, 117864621, 606145871, 3047552121, 3047552121, 94600286496, 704951848996, 2993770208371, 2993770208371, 79287715520871, 270022578802121, 746859737005246, 5515231319036496, 29357089229192746
Offset: 0
The unique number k in [1, 5^2] and congruent to 1 modulo 5 such that k^4 - 6 is divisible by 5^2 is k = 21, so a(2) = 21.
The unique number k in [1, 5^3] and congruent to 1 modulo 5 such that k^4 - 6 is divisible by 5^3 is k = 121, so a(3) = 121.
Approximations of p-adic fourth-power roots:
A325486
One of the four successive approximations up to 5^n for the 5-adic integer 6^(1/4). This is the 3 (mod 5) case (except for n = 0).
Original entry on oeis.org
0, 3, 3, 103, 228, 2728, 8978, 71478, 71478, 1633978, 3587103, 42649603, 140305853, 628587103, 3069993353, 21380540228, 82415696478, 540179368353, 540179368353, 15798968430853, 34872454758978, 34872454758978, 988546771165228, 8141104144212103, 8141104144212103
Offset: 0
The unique number k in [1, 5^2] and congruent to 3 modulo 5 such that k^4 - 6 is divisible by 5^2 is k = 3, so a(2) = 3.
The unique number k in [1, 5^3] and congruent to 3 modulo 5 such that k^4 - 6 is divisible by 5^3 is k = 103, so a(3) = 103.
Approximations of p-adic fourth-power roots:
Comments