cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A020019 Nearest integer to Gamma(n + 8/9)/Gamma(8/9).

Original entry on oeis.org

1, 1, 2, 5, 19, 92, 543, 3741, 29513, 262341, 2594262, 28248627, 335844793, 4328666215, 60120364101, 895125421053, 14222548356739, 240203038913808, 4296965473902563, 81164903395937306, 1614279745319197539, 33720510235556570814
Offset: 0

Views

Author

Keywords

Comments

Gamma(n + 8/9)/Gamma(8/9) = 1, 8/9, 136/81, 3536/729, 123760/6561, 5445440/59049, 288608320/531441, 17893715840/4782969, ...

Crossrefs

Programs

  • Magma
    [Round(Gamma(n +8/9)/Gamma(8/9)): n in [0..30]]; // G. C. Greubel, Feb 03 2018
  • Maple
    Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
  • Mathematica
    f[n_] := Round[Gamma[n + 8/9]/Gamma[8/9]]; Array[f, 22, 0] (* Robert G. Wilson v, Sep 13 2013 *)
  • PARI
    for(n=0,30, print1(round(gamma(n+8/9)/gamma(8/9)), ", ")) \\ G. C. Greubel, Feb 03 2018
    

A051231 Generalized Stirling number triangle of the first kind.

Original entry on oeis.org

1, -9, 1, 162, -27, 1, -4374, 891, -54, 1, 157464, -36450, 2835, -90, 1, -7085880, 1797714, -164025, 6885, -135, 1, 382637520, -104162436, 10655064, -535815, 14175, -189, 1, -24106163760, 6944870988, -775431468, 44411409, -1428840, 26082, -252, 1
Offset: 1

Views

Author

Keywords

Comments

T(n,m) = R_n^m(a=0, b=9) in the notation of the given 1962 reference.
T(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := Sum_{m=1..n} T(n,m)*x^m = Product_{j=0..n-1} (x - 9*j), n >= 1, and E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
From Petros Hadjicostas, Jun 06 2020: (Start)
For nonnegative integers n, m and complex numbers a, b (with b <> 0), the numbers R_n^m(a,b) were introduced by Mitrinovic (1961) using slightly different notation. They were further examined by Mitrinovic and Mitrinovic (1962). Special cases were tabulated in this and other related papers.
Special cases of these numbers are related to numbers introduced by Nörlund (1924).
These numbers are defined via the g.f. Product_{r=0..n-1} (x - (a + b*r)) = Sum_{m=0..n} R_n^m(a,b)*x^m for n >= 0. As a result, R_n^m(a,b) = R_{n-1}^{m-1}(a,b) - (a + b*(n-1))*R_{n-1}^m(a,b) for n >= m >= 1 with R_1^0(a,b) = a, R_1^1(a,b) = 1, and R_n^m(a,b) = 0 for n < m. (Because an empty product is by definition 1, we may let R_0^0(a,b) = 1.)
With a = 0 and b = 1, we get the Stirling numbers of the first kind S1(n,m) = R_n^m(a=0, b=1) = A048994(n,m) which satisfy Product_{r=0}^{n-1} (x - r) = Sum_{m=0..n} S1(n,m)*x^m with S1(n,n) = 1 for n >= 0, S1(n,0) = 0 for n >= 1, and S1(n, m) = 0 for m > n. (Array A008275 is the same as array A048994 but with no zero row and no zero column.)
We have R_n^m(a,b) = Sum_{k=0}^{n-m} (-1)^k * a^k * b^(n-m-k) * binomial(m+k, k) * S1(n, m+k) for n >= m >= 0.
For the current array, T(n,m) = R_n^m(a=0, b=9) but with no zero row or column. (End)

Examples

			Triangle T(n,m) (with rows n >= 1 and columns m = 1..n) begins:
         1;
        -9,       1;
       162,     -27,       1;
     -4374,     891,     -54,    1;
    157464,  -36450,    2835,  -90,    1;
  -7085880, 1797714, -164025, 6885, -135, 1;
   ...
3rd row o.g.f.: E(3,x) = Product_{j=0..2} (x-9*j) = 162*x - 27*x^2 + x^3. [Edited by _Petros Hadjicostas_, Jun 06 2020]
		

Crossrefs

First (m=1) column sequence is A051232(n-1).
Row sums (signed triangle): A049211(n-1)*(-1)^(n-1).
Row sums (unsigned triangle): A045756(n).
Cf. A008275 (b=1 triangle), A048994 (b=1 triangle), A051187 (b=8 triangle).

Formula

T(n, m) = T(n-1, m-1) - 9*(n-1)*T(n-1, m), n >= m >= 1; T(n, m) := 0, n < m; T(n, 0) := 0 for n >= 1; T(0, 0) = 1.
E.g.f. for the m-th column of the signed triangle: (log(1 + 9*x)/9)^m/m!.
From Petros Hadjicostas, Jun 07 2020: (Start)
T(n,m) = 9^(n-m)*Stirling1(n,m) = 9^(n-m)*A048994(n,m) = 9^(n-m)*A008275(n,m) for n >= m >= 1.
Bivariate e.g.f.-o.g.f.: Sum_{n,m >= 1} T(n,m)*x^n*y^m/n! = exp((y/9)*log(1 + 9*x)) - 1 = (1 + 9*x)^(y/9) - 1. (End)

A349971 Array read by ascending antidiagonals, A(n, k) = -(-n)^k*FallingFactorial(1/n, k) for n, k >= 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 15, 0, 1, 4, 21, 80, 105, 0, 1, 5, 36, 231, 880, 945, 0, 1, 6, 55, 504, 3465, 12320, 10395, 0, 1, 7, 78, 935, 9576, 65835, 209440, 135135, 0, 1, 8, 105, 1560, 21505, 229824, 1514205, 4188800, 2027025, 0
Offset: 1

Views

Author

Peter Luschny, Dec 21 2021

Keywords

Examples

			Array starts:
[1] 1, 0,   0,    0,      0,       0,         0,           0, ... A000007
[2] 1, 1,   3,   15,    105,     945,     10395,      135135, ... A001147
[3] 1, 2,  10,   80,    880,   12320,    209440,     4188800, ... A008544
[4] 1, 3,  21,  231,   3465,   65835,   1514205,    40883535, ... A008545
[5] 1, 4,  36,  504,   9576,  229824,   6664896,   226606464, ... A008546
[6] 1, 5,  55,  935,  21505,  623645,  21827575,   894930575, ... A008543
[7] 1, 6,  78, 1560,  42120, 1432080,  58715280,  2818333440, ... A049209
[8] 1, 7, 105, 2415,  74865, 2919735, 137227545,  7547514975, ... A049210
[9] 1, 8, 136, 3536, 123760, 5445440, 288608320, 17893715840, ... A049211
Triangle starts:
[1] [1]
[2] [1, 0]
[3] [1, 1,  0]
[4] [1, 2,  3,   0]
[5] [1, 3, 10,  15,    0]
[6] [1, 4, 21,  80,  105,     0]
[7] [1, 5, 36, 231,  880,   945,      0]
[8] [1, 6, 55, 504, 3465, 12320,  10395,      0]
[9] [1, 7, 78, 935, 9576, 65835, 209440, 135135, 0]
		

Crossrefs

Programs

  • Magma
    [k eq n select 0^(n-1) else Round((n-k+1)^(k-1)*Gamma(k-1 + (n-k)/(n-k+1))/Gamma((n-k)/(n-k+1))): k in [1..n], n in [1..10]]; // G. C. Greubel, Feb 22 2022
  • Mathematica
    A[n_, k_] := -(-n)^k * FactorialPower[1/n, k]; Table[A[n - k + 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Dec 21 2021 *)
  • SageMath
    def A(n, k): return -(-n)^k*falling_factorial(1/n, k)
    def T(n, k): return A(n-k+1, k)
    for n in (1..9): print([A(n, k) for k in (1..8)])
    for n in (1..9): print([T(n, k) for k in (1..n)])
    

Formula

From G. C. Greubel, Feb 22 2022: (Start)
A(n, k) = n^(k-1)*Pochhammer((n-1)/n, k-1) (array).
T(n, k) = (n-k+1)^(k-1)*Pochhammer((n-k)/(n-k+1), k-1) (antidiagonal triangle).
T(2*n, n) = (-1)^(n-1)*A158886(n). (End)

A147631 9-factorial numbers (6).

Original entry on oeis.org

1, 7, 112, 2800, 95200, 4093600, 212867200, 12984899200, 908942944000, 71806492576000, 6318971346688000, 612940220628736000, 64971663386646016000, 7471741289464291840000, 926495919893572188160000, 123223957345845101025280000, 17497801943110004345589760000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst,s],{n,6,2*5!,9}];lst

Formula

a(n+1) = Sum_{k=0..n} A132393(n,k)*7^k*9^(n-k). - Philippe Deléham, Nov 09 2008
a(n) = (-2)^n*Sum_{k=0..n} (9/2)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
Sum_{n>=1} 1/a(n) = 1 + (e/9^2)^(1/9)*(Gamma(7/9) - Gamma(7/9, 1/9)). - Amiram Eldar, Dec 21 2022
Previous Showing 11-14 of 14 results.