cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 89 results. Next

A300664 Infinitary 3-abundant numbers: numbers n such that isigma(n) >= 3n, where isigma is the sum of infinitary divisors of n (A049417).

Original entry on oeis.org

120, 840, 1080, 1320, 1512, 1560, 1848, 1890, 1920, 2040, 2184, 2280, 2376, 2688, 2760, 2856, 3000, 3192, 3480, 3720, 4440, 4920, 5160, 5640, 5880, 6360, 7080, 7320, 7560, 8040, 8520, 8760, 9240, 9480, 9720, 9960, 10680, 10920, 11640, 11880, 12120, 12360
Offset: 1

Views

Author

Amiram Eldar, Mar 10 2018

Keywords

Comments

Analogous to 3-abundant numbers (A023197) with isigma (A049417) instead of sigma (A000203).

Examples

			840 is in the sequence since isigma(840) = 2880 > 3 * 840.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, #]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer ? Positive] := Module[{factors = First /@ FactorInteger[n], d = Divisors[n]}, d[[Flatten[ Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][#, Last[#]]] & /@ Transpose[ Last /@ ExponentList[#, factors] & /@ d]], ?(And @@ # &), {1}]]]]]; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; Infinitary3AbundantNumberQ[k_] :=  If[properinfinitarydivisorsum[k] >= 2 k, True, False]; Select[Range[15000], Infinitary3AbundantNumberQ[#] &] (* after Ant King at A129656 *)

A318182 Numbers m such that A049417(A049417(m)) = k*m for some k where A049417 is the infinitary sigma function.

Original entry on oeis.org

1, 2, 8, 9, 10, 15, 18, 24, 30, 60, 720, 1020, 4080, 8925, 14688, 14976, 16728, 17850, 35700, 36720, 37440, 66912, 71400, 285600, 308448, 381888, 428400, 602208, 636480, 763776, 856800, 1321920, 1505520, 3011040, 3084480, 21679488, 22276800, 30844800
Offset: 1

Views

Author

Michel Marcus, Aug 20 2018

Keywords

Comments

a(86) > 3*10^11. All the prime factors of the first 85 terms belong to the set {2, 3, 5, 7, 11, 13, 17, 41, 43, 257}. - Giovanni Resta, Aug 25 2018
Like in A019278, here there are many instances where if x is a term, then A049417(x) is also a term.
Additionally, there exist longer chains of 3 or 4 elements like:
- 8 (3), 15 (4), 24 (5), 60 (6);
- 9 (2), 10 (3), 18 (4), 30 (5);
- 31615920 (4), 50585472 (5), 126463680 (6), 252927360 (12);
- 963407296051200 (16), 3134896756992000 (17), 15414516736819200 (18);
- 3541951043592192 (5), 8854877608980480 (6), 17709755217960960 (12), 53129265653882880 (20);
- 4829933241262080 (11), 17709755217960960 (12), 53129265653882880 (20);
7871002319093760 (9), 26564632826941440 (10), 70839020871843840 (13), 265646328269414400 (14).

Crossrefs

Cf. A049417 (infinitary sigma).
Cf. A019278 (analog for sigma), A318175 (analog for bi-unitary sigma).

Programs

  • PARI
    a049417(n) = {my(b, f=factorint(n)); prod(k=1, #f[, 2], b = binary(f[k, 2]); prod(j=1, #b, if(b[j], 1+f[k, 1]^(2^(#b-j)), 1)));}
    isok(n) = frac(a049417(a049417(n))/n) == 0;

Extensions

More terms from Giovanni Resta, Aug 25 2018

A327566 Partial sums of the infinitary divisors sum function: a(n) = Sum_{k=1..n} isigma(k), where isigma is A049417.

Original entry on oeis.org

1, 4, 8, 13, 19, 31, 39, 54, 64, 82, 94, 114, 128, 152, 176, 193, 211, 241, 261, 291, 323, 359, 383, 443, 469, 511, 551, 591, 621, 693, 725, 776, 824, 878, 926, 976, 1014, 1074, 1130, 1220, 1262, 1358, 1402, 1462, 1522, 1594, 1642, 1710, 1760, 1838, 1910, 1980
Offset: 1

Views

Author

Amiram Eldar, Sep 17 2019

Keywords

Comments

Differs from A307159 at n >= 16.

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.

Crossrefs

Cf. A049417 (isigma), A327574.
Cf. A024916 (all divisors), A064609 (unitary), A307042 (exponential), A307159 (bi-unitary).

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten @ (f @@@ FactorInteger[n]) + 1); Accumulate[Array[isigma, 52]]

Formula

a(n) ~ c * n^2, where c = 0.730718... (A327574).

A185288 Numbers n for which the terms of the multiplicative sequence {n^2/A049417(n)} are integers.

Original entry on oeis.org

1, 6, 60, 90, 120, 180, 360, 540, 816, 840, 1080, 1740, 1980, 2280, 2520, 3060, 3960, 5712, 6120, 8280, 9540, 11880, 12240, 16920, 18360, 19260, 24480, 25296, 25560, 32760, 36720, 42840, 48960, 54672, 57240, 63700, 73440, 74256, 84360, 85680, 97920, 103320, 115560
Offset: 1

Views

Author

Vladimir Shevelev, Feb 20 2011

Keywords

Comments

The sequence contains all infinitary perfect numbers (see A007357).

Examples

			Let n=120. Its representation over distinct terms of A050376 is 2*3*4*5. Therefore A049417(n)=(2+1)*(3+1)*(4+1)*(5+1)=360. Since 360 is a divisor of 120^2, 120 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; aQ[n_] := Divisible[n^2, isigma[n]]; Select[Range[58000], aQ] (* Amiram Eldar, Jul 21 2019 *)

Extensions

More terms from Nathaniel Johnston, Mar 16 2011
More terms from Amiram Eldar, Jul 21 2019

A240111 Numbers for which the value of the Dedekind psi function (A001615) are less than the value of the infinitary Dedekind psi function (A049417).

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 72, 88, 96, 104, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 200, 216, 224, 232, 243, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 352, 360, 375, 376, 378, 384, 392, 408, 416, 424, 440, 456, 459, 472, 480, 486
Offset: 1

Views

Author

Vladimir Shevelev, Apr 01 2014

Keywords

Comments

Numbers k for which Product_{p|k} (1 + 1/p) < Product_{q is in Q_k} (1 + 1/q), where {p} are primes, {q} are terms of A050376 and Q_k is the set of distinct q's whose product is k.
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 1, 10, 108, 1072, 10679, 106722, 1067287, 10672851, 106728514, 1067285714, ... . Apparently, the asymptotic density of this sequence exists and equals 0.1067285... . - Amiram Eldar, Feb 13 2025

Crossrefs

Complement of A240112 within the nonsquarefree numbers (A013929).

Programs

  • Mathematica
    f1[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; f2[p_, e_] := (p+1)*p^(e-1); q[1] = False; q[n_] := Module[{fct = FactorInteger[n]}, Times @@ f2 @@@ fct < Times @@ f1 @@@ fct]; Select[Range[500], q] (* Amiram Eldar, Feb 13 2025 *)
  • PARI
    isok(k) = {my(f = factor(k), b); prod(i=1, #f~, (f[i, 1]+1)*f[i, 1]^(f[i, 2]-1)) < prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)));} \\ Amiram Eldar, Feb 13 2025

Extensions

More terms from Peter J. C. Moses, Apr 02 2014

A327574 Decimal expansion of the constant that appears in the asymptotic formula for average order of the infinitary divisors sum function (A049417).

Original entry on oeis.org

7, 3, 0, 7, 1, 8, 2, 4, 2, 1, 2, 7, 3, 8, 4, 2, 2, 5, 8, 3, 8, 9, 7, 5, 4, 6, 8, 1, 7, 3, 5, 3, 0, 1, 6, 1, 9, 5, 7, 2, 5, 6, 4, 3, 3, 8, 6, 1, 7, 2, 7, 8, 6, 9, 7, 0, 7, 3, 3, 6, 7, 6, 2, 3, 0, 1, 0, 7, 9, 8, 8, 3, 3, 2, 8, 0, 0, 5, 3, 4, 6, 3, 7, 0, 2, 9, 9
Offset: 0

Views

Author

Amiram Eldar, Sep 17 2019

Keywords

Comments

The asymptotic mean of the infinitary abundancy index lim_{n->oo} (1/n) * Sum_{k=1..n} A049417(k)/k = 1.461436... is twice this constant. - Amiram Eldar, Jun 13 2020

Examples

			0.730718242127384225838975468173530161957256433861727...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.

Crossrefs

Cf. A013661 (corresponding constant for all divisors), A275480 (exponential), A306633 (unitary), A307160 (bi-unitary).

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; em = 10; f[x_] := Sum[Log[1 + x^(2^e)/(1 + 1/x^(2^e))], {e, 0, em}]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[(1/2) * Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals Limit_{k->oo} A327566(k)/k^2.
Equals (1/2) * Product_{P} (1 + 1/(P*(P+1))), where P are numbers of the form p^(2^k) where p is prime and k >= 0 (A050376).

A332975 Solutions k of the equation isigma(k) = isigma(k-1) + isigma(k-2) where isigma(k) is the sum of the infinitary divisors of k (A049417).

Original entry on oeis.org

3, 24, 360, 5016, 28440, 42066, 50568, 60456, 187176, 998670, 1454706, 12055512, 14365608, 25726728, 27896424, 51670374, 91702962, 141084774, 236280786, 249854952, 386668344, 439362504, 792554574, 1115866152, 1931976696, 2467823442, 2496238590, 2655297558, 2715505440
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Examples

			24 is a term since isigma(24) = 60 and isigma(22) + isigma(23) = 36 + 24 = 60.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[3, 10^5], isigma[#] == isigma[# - 1] + isigma[# - 2] &]

A318272 a(n) is the least k such that A049417(A049417(k)) = n*k, where A049417 is the infinitary sigma function, or 0 if no such k exists.

Original entry on oeis.org

1, 2, 8, 15, 24, 60, 1321920, 17850, 285600, 763776
Offset: 1

Views

Author

Michel Marcus, Aug 23 2018

Keywords

Comments

It is also known that a(12) = 71400.
Then for higher indices n, we have:
a(11) <= 414230544000;
a(13) <= 2667897127526400;
a(14) <= 446464417259520;
a(15) <= 23613006957281280;
a(16) <= 22227004800;
a(17) <= 3134896756992000;
a(18) <= 15414516736819200;
a(20) <= 53129265653882880.
a(16) = 8420630400. - Giovanni Resta, Aug 25 2018

Crossrefs

Cf. A272930 (analog for sigma), A318242 (analog for bi-unitary sigma).

A326488 Numbers m such that A327566(m) = Sum_{k=1..m} isigma(k) is divisible by m, where isigma(k) is the sum of infinitary divisors of k (A049417).

Original entry on oeis.org

1, 2, 160, 285, 2340, 2614, 8903, 81231, 171710, 182712, 434887, 2651907, 56517068, 143714354, 922484770, 5162883263, 39421525873
Offset: 1

Views

Author

Amiram Eldar, Sep 20 2019

Keywords

Comments

The infinitary version of A056550.
The corresponding quotients, A327566(a(n))/a(n), are 1, 2, 118, 209, 1711, 1910, 6506, 59357, 125473, 133513, 317781, 1937798, 41298052, 105014703, 674076450, 3772612983, 28806028088, ...

Examples

			2 is in the sequence since isigma(1) + isigma(2) = 1 + 3 = 4 is divisible by 2.
		

Crossrefs

Cf. A049417 (isigma), A327566 (sums of isigma).
Cf. A056550 (corresponding with sigma), A064611 (unitary), A307043 (exponential), A307161 (bi-unitary).

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten @ (f @@@ FactorInteger[n]) + 1); seq = {}; s = 0; Do[s = s + isigma [n]; If[Divisible[s, n], AppendTo[seq, n]], {n, 1, 10^6}]; seq

A335400 Numbers m such that sigma(m)/isigma(m) > sigma(k)/isigma(k) for all k < m, where sigma(m) is the sum of divisors of m (A000203) and isigma(m) is the sum of infinitary divisors of m (A049417).

Original entry on oeis.org

1, 4, 16, 144, 1296, 3600, 20736, 32400, 176400, 518400, 1587600, 12960000, 25401600, 635040000, 3073593600
Offset: 1

Views

Author

Amiram Eldar, Jun 05 2020

Keywords

Examples

			The ratio sigma(m)/isigma(m) for m = 1, 2, 3 and 4 is 1, 1, 1 and 7/5. The record values occur at m = 1 and 4.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[ If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; f[n_] := DivisorSigma[1,n] / isigma[n]; s={}; fm = 0; Do[f1 = f[n]; If[f1 > fm, fm = f1; AppendTo[s, n]], {n, 1, 2 * 10^5}]; s
Previous Showing 11-20 of 89 results. Next