cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A268641 Squarefree numbers k such that k^2 + 1 and k^2 - 1 are also squarefree.

Original entry on oeis.org

2, 6, 14, 22, 30, 34, 42, 58, 66, 78, 86, 94, 102, 106, 110, 114, 130, 138, 142, 158, 166, 178, 186, 194, 202, 210, 214, 222, 230, 238, 254, 258, 266, 286, 302, 310, 322, 330, 346, 354, 358, 366, 390, 394, 398, 402, 410, 430, 434, 438, 446, 454, 462, 466, 470, 498
Offset: 1

Views

Author

K. D. Bajpai, Feb 09 2016

Keywords

Comments

All the listed terms are even squarefree numbers.
Subsequence of A039956.

Examples

			a(2) = 6 = 2 * 3: 6^2 + 1 = 37 = 1 * 37; 6^2 - 1 = 35 = 5 * 7; 6, 37, 35 are all squarefree.
		

Crossrefs

Programs

  • Magma
    [n : n in [1..1000]  |  IsSquarefree(n) and IsSquarefree(n^2+1) and IsSquarefree(n^2-1) ];
  • Maple
    select(n -> andmap(issqrfree, [n, n^2+1, n^2-1]), [seq(n, n=2.. 10^3)]);
  • Mathematica
    Select[Range[1000], SquareFreeQ[#] && SquareFreeQ[#^2 + 1] && SquareFreeQ[#^2 - 1] &]
  • PARI
    for(n=2, 1000, issquarefree(n) & issquarefree(n^2 + 1) & issquarefree(n^2 - 1) & print1(n,", "))
    

A218574 Numbers k such that k^2 + 1 is divisible by a 7th power.

Original entry on oeis.org

32318, 45807, 110443, 123932, 188568, 202057, 266693, 280182, 344818, 358307, 422943, 436432, 501068, 514557, 579193, 592682, 657318, 670807, 735443, 748932, 813568, 827057, 891693, 905182, 969818, 983307
Offset: 1

Views

Author

Michel Lagneau, Nov 02 2012

Keywords

Examples

			32318 is in the sequence because 32318^2 + 1 =  5 ^ 7 * 29 * 461.
6826318 is in the sequence because 6826318^2 + 1 = 5 ^ 3 * 13 ^ 8 * 457.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,1500000],Max[Transpose[FactorInteger[#^2+1]][[2]]]>6&]

A218719 a(n) is smallest number such that a(n)^2 + 1 is divisible by 97^n.

Original entry on oeis.org

0, 22, 4052, 107551, 22709274, 331407850, 197177418061, 26457926739667, 2369608176604944, 76004727767164666, 25163629663367816827, 1965881512952938486496, 191165497320828772935835, 21700278688179406782082106, 560121950820639295011033922
Offset: 0

Views

Author

Michel Lagneau, Nov 04 2012

Keywords

Examples

			a(3) = 107551 because 107551^2+1 = 2 * 97 ^ 3 * 6337.
		

Crossrefs

Programs

  • Mathematica
    b=22;n97=97;jo=Join[{0,b},Table[n97=97*n97;b=PowerMod[b, 97,n97];b=Min[b,n97-b],{99}]]

A282092 Numbers m such that there exists at least one integer k < m such that m^2+1 and k^2+1 have the same prime factors.

Original entry on oeis.org

7, 18, 117, 239, 378, 843, 2207, 2943, 4443, 4662, 6072, 8307, 8708, 9872, 31561, 103682, 271443, 853932, 1021693, 3539232, 3699356, 6349657, 6907607, 7042807, 7249325, 9335094, 12623932, 12752043, 12813848, 22211431, 33385282, 42483057, 52374157, 105026693
Offset: 1

Views

Author

Michel Lagneau, Feb 06 2017

Keywords

Comments

For the pairs (m, k), is k always unique?
The pairs (m, k) are (7, 3), (18, 8), (117, 43), (239, 5), (378, 132), (843, 377), (2207, 987), (2943, 73), (4443, 53), (4662, 1568), (6072, 5118), (8307, 743), (8708, 2112), (9872, 2738), ...

Examples

			7 is in the sequence because of the pair (m, k) = (7, 3), 7^2+1 = 2*5^2 and 3^2+1 = 2*5 with the same prime factors 2 and 5.
		

Crossrefs

Subsequence of A049532 (numbers n such that n^2 + 1 is not squarefree).

Programs

  • Mathematica
    Select[Range@ 5000, Function[m, Total@ Boole@ Table[Function[w, And[SameQ[First@ w, #], SameQ[Last@ w, #]] &@ Union@ Flatten@ w]@ Map[FactorInteger[#][[All, 1]] &, {m^2 + 1, k^2 + 1}], {k, m - 1}] > 0]] (* Michael De Vlieger, Feb 07 2017 *)
  • PARI
    isok(n)=ok = 0; vn = factor(n^2+1)[,1]; for (k=1, n-1, if (factor(k^2+1)[,1] == vn, ok = 1; break);); ok; \\ Michel Marcus, Feb 09 2017
    
  • PARI
    squeeze(f)=factorback(f)\2
    list(lim)=my(v=List(),m=Map(),t); for(n=1,lim, t=squeeze(factor(n^2+1)[,1]); if(mapisdefined(m,t), listput(v,n), mapput(m,t,0))); Vec(v) \\ Charles R Greathouse IV, Feb 12 2017
  • Perl
    use ntheory qw(:all);
    for (my ($m, %t) = 1 ; ; ++$m) {
    my $k = vecprod(map{$_->[0]}factor_exp($m**2+1));
    push @{$t{$k}}, $m;
    if (@{$t{$k}} >= 2) {
    print'('.join(', ',reverse(@{$t{$k}})).")\n";
    }
    } # Daniel Suteu, Feb 08 2017
    

Extensions

a(15)-a(29) from Daniel Suteu, Feb 08 2017
a(30) from Daniel Suteu, Feb 10 2017
a(31)-a(34) from Joerg Arndt, Feb 11 2017

A218720 a(n) is smallest number such that a(n)^2 + 1 is divisible by 101^n.

Original entry on oeis.org

0, 10, 515, 296344, 35764191, 1108900220, 316411915250, 47023298541694, 3156215819652023, 310872228812491206, 28124944860980892220, 3783840171259076226254, 208193145695151069244665, 19364218657938636320485082, 663491749602035014400202724
Offset: 0

Views

Author

Michel Lagneau, Nov 04 2012

Keywords

Examples

			a(3) = 296344 because 296344^2+1 = 101 ^ 3 * 85237.
		

Crossrefs

Programs

  • Mathematica
    b=10;n101=101;jo=Join[{0,b},Table[n101=101*n101;b=PowerMod[b, 101,n101];b=Min[b,n101-b],{99}]]

A383672 Squarefree numbers k such that k^2+1 is not squarefree.

Original entry on oeis.org

7, 38, 41, 43, 57, 70, 82, 93, 107, 118, 143, 157, 182, 193, 218, 239, 251, 257, 282, 293, 307, 318, 327, 357, 382, 393, 407, 418, 437, 443, 457, 482, 493, 515, 518, 543, 557, 577, 582, 593, 606, 607, 618, 643, 682, 707, 718, 743, 746, 757, 782, 793, 807, 818, 829, 843, 857, 893
Offset: 1

Views

Author

Alexandre Herrera, May 04 2025

Keywords

Examples

			38 = 2*19 is squarefree but 38*38 + 1 = 1445 = 5*17*17 is not squarefree.
		

Crossrefs

Intersection of A005117 and A049532.
Includes A141932 and A141941.

Programs

  • Maple
    filter:= proc(n) numtheory:-issqrfree(n) and not numtheory:-issqrfree(n^2+1) end proc:
    select(filter, [$1..1000]); # Robert Israel, May 04 2025
  • Mathematica
    Select[Range[900],SquareFreeQ[#] && !SquareFreeQ[#^2+1] &] (* Stefano Spezia, May 04 2025 *)
  • PARI
    isok(k) = issquarefree(k) && !issquarefree(k^2+1); \\ Michel Marcus, May 04 2025
  • Python
    from sympy import factorint
    def is_squarefree(n):
        return all(exponent == 1 for exponent in factorint(n).values())
    print([a for a in range(1,900) if is_squarefree(a) and not(is_squarefree(a*a + 1))])
    
Previous Showing 21-26 of 26 results.