A162940
a(n) = binomial(n+1,2)*6^2.
Original entry on oeis.org
0, 36, 108, 216, 360, 540, 756, 1008, 1296, 1620, 1980, 2376, 2808, 3276, 3780, 4320, 4896, 5508, 6156, 6840, 7560, 8316, 9108, 9936, 10800, 11700, 12636, 13608, 14616, 15660, 16740, 17856, 19008, 20196, 21420, 22680, 23976, 25308, 26676, 28080, 29520, 30996
Offset: 0
A192026
Square array read by antidiagonals: W(n,m) (n >= 3, m >= 1) is the Wiener index of the graph G(n,m) obtained from an n-wheel graph by adjoining m pendant edges at each node of the cycle.
Original entry on oeis.org
36, 72, 90, 120, 180, 168, 180, 300, 336, 270, 252, 450, 560, 540, 396, 336, 630, 840, 900, 792, 546, 432, 840, 1176, 1350, 1320, 1092, 720, 540, 1080, 1568, 1890, 1980, 1820, 1440, 918, 660, 1350, 2016, 2520, 2772, 2730, 2400, 1836, 1140, 792, 1650, 2520, 3240, 3696, 3822, 3600, 3060, 2280, 1386
Offset: 3
W(3,1)=36 because in the graph with vertex set {O,A,B,C,A',B',C'} and edge set {OA, OB, OC, AB, BC, CA, AA', BB', CC'} we have 9 pairs of vertices at distance 1 (the edges), 9 pairs at distance 2 (A'O, A'B, A'C, B'O, B'A, B'C, C'O, C'A, C'B) and 3 pairs at distance 3 (A'B', B'C', C'A'); 9*1 + 9*2 + 3*3 = 36.
The square array starts:
36, 90, 168, 270, 396, 546, 720, 918, ...;
72, 180, 336, 540, 792, 1092, 1440, 1836, ...;
120, 300, 560, 900, 1320, 1820, 2400, 3060, ...;
180, 450, 840, 1350, 1980, 2730, 3600, 4590, ...;
-
W := proc (n, m) options operator, arrow: n*(n-1)*(m+1)*(2*m+1) end proc: for n from 3 to 12 do seq(W(n-i, i+1), i = 0 .. n-3) end do; # yields the antidiagonals in triangular form
W := proc (n, m) options operator, arrow: n*(n-1)*(m+1)*(2*m+1) end proc: for n from 3 to 12 do seq(W(n, m), m = 1 .. 10) end do; # yields the first 10 entries of each of rows 3,4,...,12.
A322462
Numbers on the 0-1-12 line in a spiral on a grid of equilateral triangles.
Original entry on oeis.org
0, 1, 12, 13, 36, 37, 72, 73, 120, 121, 180, 181, 252, 253, 336, 337, 432, 433, 540, 541, 660, 661, 792, 793, 936, 937, 1092, 1093, 1260, 1261, 1440, 1441, 1632, 1633, 1836, 1837, 2052, 2053, 2280, 2281, 2520, 2521, 2772, 2773, 3036, 3037, 3312, 3313, 3600
Offset: 0
a(0) = 0
a(1) = a(1 - 1) + 1 = 0 + 1
a(2) = (3/2) * 2 * (2 + 2) = 3 * 4 = 12
a(3) = a(3 - 1) + 1 = 12 + 1 = 13
a(4) = (3/2) * 4*(4 + 2) = 3 * 2 * 6 = 6 * 6 = 36
a(5) = a(4) + 1 = 36 + 1 = 37.
-
seq(coeff(series(-x*(x^3-x^2+11*x+1)/((x+1)^2*(x-1)^3),x,n+1), x, n), n = 0 .. 50); # Muniru A Asiru, Dec 19 2018
-
a[0] = 0; a[n_] := a[n] = If[OddQ[n], a[n - 1] + 1, 3/2*n*(n + 2)]; Array[a, 50, 0] (* Amiram Eldar, Dec 09 2018 *)
-
concat(0, Vec(x*(1 + 11*x - x^2 + x^3) / ((1 - x)^3*(1 + x)^2) + O(x^40))) \\ Colin Barker, Dec 09 2018
A192029
Square array read by antidiagonals: W(n,m) (n >= 3, m >= 1) is the Wiener index of the graph G(n,m) obtained from an n-wheel graph by adjoining at each of its n rim nodes a path with m nodes (if m=1, then the n-wheel is not modified).
Original entry on oeis.org
6, 12, 36, 20, 72, 111, 30, 120, 220, 252, 42, 180, 365, 496, 480, 56, 252, 546, 820, 940, 816, 72, 336, 763, 1224, 1550, 1592, 1281, 90, 432, 1016, 1708, 2310, 2620, 2492, 1896, 110, 540, 1305, 2272, 3220, 3900, 4095, 3680, 2682, 132, 660, 1630, 2916, 4280, 5432, 6090, 6040, 5196, 3660
Offset: 3
W(3,2)=36 because in the graph with vertex set {O,A,B,C,A',B',C'} and edge set {OA, OB, OC, AB, BC, CA, AA', BB', CC'} we have 9 pairs of vertices at distance 1 (the edges), 9 pairs at distance 2 (A'O, A'B, A'C, B'O, B'A, B'C, C'O, C'A, C'B) and 3 pairs at distance 3 (A'B', B'C', C'A'); 9*1 + 9*2 + 3*3 = 36.
The square array starts:
6, 36, 111, 252, 480, 816, 1281, ...;
12, 72, 220, 496, 940, 1592, 2492, ...;
20, 120, 365, 820, 1550, 2620, 4095, ...;
30, 180, 546, 1224, 2310, 3900, 6090, ...;
-
W := proc (n, m) options operator, arrow: (1/6)*n*m*(3*n*m+3*n*m^2+2-6*m-2*m^2) end proc: for n from 3 to 12 do seq(W(n-i, i+1), i = 0 .. n-3) end do; # yields the antidiagonals in triangular form
W := proc (n, m) options operator, arrow: (1/6)*n*m*(3*n*m+3*n*m^2+2-6*m-2*m^2) end proc: for n from 3 to 12 do seq(W(n, m), m = 1 .. 10) end do; # yields the first 10 entries of each of rows 3,4,...,12.
P := proc (n, m) options operator, arrow: sort(expand(simplify(n*t*(t^m-m*t+m-1)/(1-t)^2+n*t*(1-t^m)/(1-t)+n*t*(1-t^m)^2/(1-t)^2+(1/2)*n*(n-3)*t^2*(1-t^m)^2/(1-t)^2))) end proc; P(4, 3);
A192031
Rectangular array read by rows: T(n,k) is the number of unordered pairs of nodes at distance k in the helm graph G(n) obtained from a wheel graph with n spokes by adjoining a pendant edge at each node of the cycle (n>=3, k>=1). The entries in row n are the coefficients of the corresponding Wiener polynomial.
Original entry on oeis.org
9, 9, 3, 12, 14, 8, 2, 15, 20, 15, 5, 18, 27, 24, 9, 21, 35, 35, 14, 24, 44, 48, 20, 27, 54, 63, 27, 30, 65, 80, 35, 33, 77, 99, 44, 36, 90, 120, 54, 39, 104, 143, 65, 42, 119, 168, 77, 45, 135, 195, 90, 48, 152, 224, 104, 51, 170, 255, 119, 54, 189, 288, 135, 57, 209, 323, 152, 60, 230, 360, 170
Offset: 3
T(3,3)=3 because in the graph G(3) with vertex set {A,B,C,D,B',C',D'} and edge set {BC,CD,DB,AB,AC,AD,BB',CC",DD'} there are exactly 3 pairs of vertices at distance 3: B'C', C'D', and D'B'.
Rectangular array starts:
9,9,3;
12,14,8,2;
15,20,15,5;
18,27,24,9;
- B. E. Sagan, Y-N. Yeh, and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
- Eric Weisstein's World of Mathematics, Wheel Graph.
- Eric Weisstein's World of Mathematics, Helm Graph.
- Eric Weisstein's World of Mathematics, Gear Graph.
-
P := proc (n) options operator, arrow: 3*n*t+(1/2)*n*(n+3)*t^2+n*(n-2)*t^3+(1/2)*n*(n-3)*t^4 end proc: T := proc (n, k) options operator, arrow: coeff(P(n), t, k) end proc: seq(T(3, k), k = 1 .. 3); for n from 4 to 20 do seq(T(n, k), k = 1 .. 4) end do; # yields rows 3,4,..., 20 of the rectangular array
-
P[n_] := 3*n*t + (1/2)*n*(n+3)*t^2 + n*(n-2)*t^3 + (1/2)*n*(n-3)*t^4; T[n_]:=Rest@CoefficientList[P[n], t]; Table[T[n], {n, 3, 20}] // Flatten (* Jean-François Alcover, Sep 07 2024, after Maple program *)
A267849
Triangular array: T(n,k) is the 2-row creation rook number to place k rooks on a 3 x n board.
Original entry on oeis.org
1, 1, 3, 1, 6, 12, 1, 9, 36, 60, 1, 12, 72, 240, 360, 1, 15, 120, 600, 1800, 2520, 1, 18, 180, 1200, 5400, 15120, 20160, 1, 21, 252, 2100, 12600, 52920, 141120, 181440, 1, 24, 336, 3360, 25200, 141120, 564480, 1451520, 1814400, 1, 27, 432, 5040, 45360, 317520, 1693440, 6531840, 16329600, 19958400
Offset: 0
The triangle T(n,k) begins in row n=0 with columns 0<=k<=n:
1
1 3
1 6 12
1 9 36 60
1 12 72 240 360
1 15 120 600 1800 2520
1 18 180 1200 5400 15120 20160
1 21 252 2100 12600 52920 141120 181440
1 24 336 3360 25200 141120 564480 1451520 1814400
1 27 432 5040 45360 317520 1693440 6531840 16329600 19958400
Cf.
A013610 (1-rook coefficients on the 3xn board),
A121757 (2-rook coeffs. on the 2xn board),
A013609 (1-rook coeffs. on the 2xn board),
A013611 (1-rook coeffs. on the 4xn board),
A008279 (2-rook coeffs. on the 1xn board),
A082030 (row sums?),
A049598 (column k=2),
A007531 (column k=3 w/o factor 10),
A001710 (diagonal?).
Previous
Showing 21-26 of 26 results.
Comments