cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 178 results. Next

A262902 a(n) = A049820(A045765(n)); parent-nodes of the leaves of the tree generated by edge-relation A049820(child) = parent.

Original entry on oeis.org

5, 4, 11, 17, 14, 16, 22, 22, 29, 27, 35, 32, 41, 46, 44, 46, 51, 48, 57, 57, 58, 65, 62, 70, 69, 77, 81, 80, 92, 91, 101, 96, 107, 102, 111, 110, 111, 119, 118, 114, 129, 120, 129, 130, 128, 128, 139, 141, 138, 147, 144, 155, 148, 161, 158, 165, 152, 162, 166, 169, 162, 176, 181, 191, 187, 199, 192, 201, 214, 215, 222, 216, 227, 224, 231, 239, 238, 238, 249, 234, 249, 247, 255, 255
Offset: 1

Views

Author

Antti Karttunen, Oct 06 2015

Keywords

Comments

The sequence is computed for each leaf of the tree (A045765), ordered by their magnitude, and it contains duplicates.

Crossrefs

Row 2 of A262898.
Cf. A262901 (same sequence sorted into ascending order, with duplicates removed).
Cf. also A257507.

Programs

Formula

a(n) = A049820(A045765(n)).

A262903 Numbers that are not leaves but all of whose children are leaves in the tree generated by edge-relation A049820(child) = parent.

Original entry on oeis.org

4, 5, 14, 16, 32, 41, 44, 77, 80, 92, 101, 110, 119, 128, 139, 148, 158, 161, 169, 176, 191, 192, 199, 215, 224, 227, 234, 238, 249, 262, 264, 277, 296, 311, 317, 327, 350, 351, 352, 360, 363, 382, 385, 389, 392, 395, 396, 411, 427, 430, 437, 448, 449, 461, 464, 483, 488, 518, 523, 531, 532, 542, 552, 561, 568, 570, 577, 579, 600, 601, 613, 619, 632, 634, 636, 645, 648, 659, 665, 666, 671, 682, 683, 696, 705, 723
Offset: 1

Views

Author

Antti Karttunen, Oct 06 2015

Keywords

Comments

Numbers n for which A060990(n) > 0 and A060990(n) = A262900(n).
Numbers n for which A262695(n) = 2.

Crossrefs

Subsequence of A262901 and A236562.
No common terms with A259934.
Cf. also A257512.

A263091 Primes p for which A049820(x) = p has no solution.

Original entry on oeis.org

7, 13, 19, 37, 43, 67, 79, 103, 109, 113, 131, 163, 167, 193, 229, 241, 251, 257, 271, 293, 307, 313, 353, 359, 379, 383, 397, 401, 439, 463, 479, 487, 491, 499, 503, 509, 563, 571, 647, 653, 661, 673, 701, 739, 743, 757, 761, 773, 823, 859, 863, 883, 887, 911, 937, 941, 953, 967, 971, 977, 983, 1009, 1093, 1103, 1109, 1171, 1181, 1193, 1217, 1279, 1283, 1291, 1297, 1307, 1321, 1361
Offset: 1

Views

Author

Antti Karttunen, Oct 11 2015

Keywords

Comments

Primes p that there is no such k for which k - d(k) = p, where d(k) is the number of divisors of k (A000005).

Crossrefs

Complement among primes: A263090.
Intersection of A000040 and A045765.
Subsequence of A067774 (A049591).

Programs

  • Mathematica
    lim = 10000; s = Select[Complement[Range@ lim, Sort@ DeleteDuplicates@ Table[n - DivisorSigma[0, n], {n, lim}]], PrimeQ]; Take[s, 76] (* Michael De Vlieger, Oct 13 2015 *)
  • PARI
    allocatemem(123456789);
    uplim1 = 2162160 + 320; \\ = A002182(41) + A002183(41).
    v060990 = vector(uplim1);
    for(n=3, uplim1, v060990[n-numdiv(n)]++);
    A060990 = n -> if(!n,2,v060990[n]);
    n=0; forprime(p=2, 524287, if((0 == A060990(p)), n++; write("b263091.txt", n, " ", p)));
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A263091 (MATCHING-POS 1 1 (lambda (n) (and (= 1 (A010051 n)) (zero? (A060990 n))))))

A263257 a(n) = least number with distance n to the infinite trunk (A259934) of the tree defined by edge-relation A049820(child) = parent.

Original entry on oeis.org

0, 1, 3, 5, 7, 19, 23, 27, 29, 31, 35, 37, 41, 43, 51, 53, 57, 59, 61, 65, 67, 71, 73, 77, 79, 223, 231, 233, 237, 239, 241, 249, 251, 263, 267, 269, 271, 277, 285, 291, 293, 299, 303, 315, 317, 321, 327, 331, 335, 337, 341, 347, 349, 357, 359, 369, 857, 859, 1077, 1081, 1087, 1095, 1097, 1101
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2015

Keywords

Comments

a(n) = least number k for which A263254(k) = n.
Also positions of records in A263254, thus the sequence is strictly increasing.

Crossrefs

First column of array A263255.

A325020 Numbers m such that m*(m-tau(m))/sigma(m) is an integer h where k-tau(k) is the number of nondivisors of k (A049820) and sigma(k) is the sum of the divisors of k (A000203).

Original entry on oeis.org

1, 2, 6, 22, 28, 76, 84, 90, 96, 170, 216, 248, 252, 496, 520, 532, 588, 672, 700, 852, 864, 1240, 2176, 2448, 2480, 2812, 3360, 6048, 7392, 7584, 8128, 9120, 11480, 12616, 12768, 13832, 14056, 14720, 15456, 19488, 20536, 21216, 27000, 30240, 31584, 31968
Offset: 1

Views

Author

Jaroslav Krizek, Mar 24 2019

Keywords

Comments

Even perfect numbers from A000396 are terms.
Corresponding values of integers h: 0, 0, 1, 11, 11, 38, 27, 30, 32, 85, 72, 124, 81, ...
Supersequence of A325021 and A325023.

Examples

			28 is a term because 28*(28-tau(28))/sigma(28) = 28*(28-6)/56 = 11 (integer).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | IsIntegral((n - NumberOfDivisors(n)) * n / SumOfDivisors(n))]
    
  • Mathematica
    Select[Range[10^5], IntegerQ[#1 (#1 - #2)/#3] & @@ Prepend[DivisorSigma[{0, 1}, #], #] &] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    isok(m) = frac(m*(m-numdiv(m))/sigma(m)) == 0; \\ Michel Marcus, Mar 25 2019
    
  • Python
    from itertools import count, islice
    from math import prod
    from functools import reduce
    from sympy import factorint
    def A325020_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            f = factorint(n)
            s = prod((p**(e+1)-1)//(p-1) for p, e in f.items())
            if not (n-reduce(lambda x,y:x*y%s,(e+1 for e in f.values()),1))*n%s:
                yield n
    A325020_list = list(islice(A325020_gen(),20)) # Chai Wah Wu, Feb 14 2023

A229210 Numbers k such that Sum_{i=1..k} (i-tau(i))^i == 0 (mod k), where tau(i) = A000005(i), the number of divisors of i, and i-tau(i) = A049820(i).

Original entry on oeis.org

1, 2, 5, 24, 36, 371, 445, 1578, 3616, 9292, 38123, 142815, 184097
Offset: 1

Views

Author

Paolo P. Lava, Sep 16 2013

Keywords

Comments

a(12) > 50000.
a(14) > 200000. - Michel Marcus, Feb 25 2016

Examples

			(1 - tau(1))^1 + (2 - tau(2))^2 + ... + (5 - tau(5))^5 = 245 and 245 / 5 = 49.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local n, t; t:=0;
    for n from 1 to q do t:=t+(n-tau(n))^n; if t mod n=0 then print(n);
    fi; od; end: P(10^6);
  • PARI
    isok(n) = sum(i=1, n, Mod(i-numdiv(i), n)^i) == 0; \\ Michel Marcus, Feb 25 2016

Extensions

Name corrected by Michel Marcus, Feb 25 2016
a(12)-a(13) from Michel Marcus, Feb 25 2016

A262513 Numbers where A049820 takes a unique value; numbers n for which A060990(A049820(n)) = 1.

Original entry on oeis.org

5, 6, 7, 8, 11, 14, 17, 18, 20, 22, 23, 24, 27, 32, 34, 35, 40, 43, 46, 47, 50, 51, 57, 58, 61, 65, 72, 73, 77, 79, 81, 84, 86, 87, 88, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 107, 114, 116, 119, 120, 123, 125, 130, 135, 137, 143, 151, 154, 155, 158, 160, 163, 164, 173, 175, 177, 179, 184, 187, 191, 193, 194, 197, 198, 200, 203, 204, 206, 209, 210, 212
Offset: 1

Views

Author

Antti Karttunen, Sep 25 2015

Keywords

Comments

Sequence A262512 sorted into ascending order.
Numbers n such that there is no other number k for which A049820(k) = A049820(n).

Crossrefs

Cf. A262509 (a subsequence).

Programs

  • Mathematica
    lim = 212; s = Table[n - DivisorSigma[0, n], {n, 2 lim + 3}]; t = Length@ Position[s, #] & /@ Range[0, lim]; Position[t[[# + 1]] & /@ Take[s, lim], 1] // Flatten (* Michael De Vlieger, Sep 29 2015, after Wesley Ivan Hurt at A049820 *)

A262676 Number of nonzero even numbers encountered when iterating A049820 starting from n: a(0) = 0 and for n >= 1, a(n) = (1-A000035(n)) + a(A049820(n)).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 2, 0, 2, 2, 3, 2, 3, 2, 4, 2, 3, 2, 4, 2, 5, 2, 5, 2, 4, 5, 6, 2, 6, 2, 6, 2, 7, 2, 7, 2, 3, 2, 8, 2, 8, 2, 8, 2, 9, 2, 9, 2, 9, 9, 10, 2, 10, 2, 10, 2, 10, 2, 11, 2, 10, 2, 12, 2, 3, 2, 12, 2, 13, 2, 13, 2, 11, 2, 14, 2, 14, 2, 14, 2, 14, 14, 15, 14, 12, 14, 16, 14, 15, 14, 15, 14, 17, 14, 16, 14, 13, 14, 18, 14, 15, 14, 17
Offset: 0

Views

Author

Antti Karttunen, Oct 03 2015

Keywords

Comments

Number of even numbers encountered before zero is reached when starting from k = n and repeatedly applying the map that replaces k by k - d(k), where d(k) is the number of divisors of k (A000005). This count includes n itself if it is even, but excludes the zero.

Crossrefs

Formula

a(0) = 0; for n >= 1, a(n) = (1-A000035(n)) + a(A049820(n)).
Other identities. For all n >= 0:
A155043(n) = a(n) + A262677(n).

A322974 Lexicographically earliest such sequence a that a(i) = a(j) => f(i) = f(j) for all i, j, where f(1) = 0, f(2) = 1, f(n) = 3 if A009191(n) == 1 and f(n) = A049820(n) for all other numbers > 2.

Original entry on oeis.org

1, 2, 3, 3, 3, 4, 3, 5, 6, 6, 3, 6, 3, 7, 3, 3, 3, 8, 3, 9, 3, 10, 3, 11, 3, 12, 3, 12, 3, 12, 3, 13, 3, 14, 3, 15, 3, 16, 3, 17, 3, 16, 3, 18, 19, 20, 3, 18, 3, 21, 3, 22, 3, 22, 3, 23, 3, 24, 3, 23, 3, 25, 26, 3, 3, 25, 3, 27, 3, 27, 3, 28, 3, 29, 30, 29, 3, 29, 3, 29, 3, 31, 3, 32, 3, 33, 3, 34, 3, 31, 3, 35, 3, 36, 3, 37, 3, 38, 39, 3, 3, 40, 3, 41, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 05 2019

Keywords

Comments

For all i, j:
A322810(i) = A322810(j) => a(i) = a(j),
a(i) = a(j) => A323073(i) = A323073(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A322974aux(n) = if(n<=2,n-1,my(u=(n-numdiv(n))); if(1==gcd(n,u),3,u));
    v322974 = rgs_transform(vector(up_to,n,A322974aux(n)));
    A322974(n) = v322974[n];

A262891 a(n) = A060990(A259934(n)); branching degree of node n in the infinite trunk of the tree generated by edge-relation A049820(child) = parent.

Original entry on oeis.org

2, 1, 3, 1, 1, 4, 1, 2, 1, 3, 1, 2, 2, 4, 2, 1, 1, 3, 1, 2, 3, 1, 2, 3, 2, 2, 3, 4, 2, 2, 1, 1, 1, 2, 3, 2, 1, 1, 2, 1, 2, 2, 3, 3, 1, 1, 3, 2, 2, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 3, 2, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 4, 2, 2, 2, 3, 2, 2, 3, 2, 1, 2, 2, 1, 3, 2, 2, 3, 1, 2, 3, 2, 2, 1
Offset: 0

Views

Author

Antti Karttunen, Oct 04 2015

Keywords

Crossrefs

Positions of ones: A262892.

Programs

Formula

a(n) = A060990(A259934(n)).
Previous Showing 31-40 of 178 results. Next