cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A051199 T(2n+6,n), array T as in A050186; a count of aperiodic binary words.

Original entry on oeis.org

0, 8, 40, 216, 980, 4368, 18468, 77520, 319440, 1307448, 5310448, 21474180, 86488020, 347373600, 1391956192, 5567901768, 22239898848, 88732378800, 353696824152, 1408831480056, 5608231863080, 22314239255088
Offset: 0

Views

Author

Keywords

A050187 a(n) = n * floor((n-1)/2).

Original entry on oeis.org

0, 0, 0, 3, 4, 10, 12, 21, 24, 36, 40, 55, 60, 78, 84, 105, 112, 136, 144, 171, 180, 210, 220, 253, 264, 300, 312, 351, 364, 406, 420, 465, 480, 528, 544, 595, 612, 666, 684, 741, 760, 820, 840, 903, 924, 990, 1012, 1081, 1104, 1176
Offset: 0

Views

Author

Clark Kimberling, Dec 11 1999

Keywords

Comments

T(n,2), array T as in A050186; a count of aperiodic binary words.
The Row2 triangle sums A159797 lead to the sequence given above for n >= 1 with a(1)=0. For the definitions of the Row2 and other triangle sums see A180662. - Johannes W. Meijer, May 20 2011
The number of chords joining n equally distributed points on a circle with a length less than the diameter. - Wesley Ivan Hurt, Nov 23 2013
a(n) is the maximum possible length of a circuit in the complete graph on n vertices. - Geoffrey Critzer, May 23 2014
For n > 0, a(n) is half the sum of the perimeters of the distinct rectangles that can be made with positive integer sides such that L + W = n, W < L. For example, a(14) = 84; the rectangles are 1 X 13, 2 X 12, 3 X 11, 4 X 10, 5 X 9, 6 X 8 (the 7 X 7 rectangle is not considered since we have W < L). The sum of the perimeters gives 28 + 28 + 28 + 28 + 28 + 28 = 168, half of which is 84. - Wesley Ivan Hurt, Nov 23 2017
Sum of the middle side lengths of all integer-sided triangles with perimeter 3n whose side lengths are in arithmetic progression (For example, when n=5 there are two triangles with perimeter 3(5) = 15 whose side lengths are in arithmetic progression: [3,5,7] and [4,5,6]; thus a(5) = 5+5 = 10). - Wesley Ivan Hurt, Nov 01 2020

Crossrefs

Programs

Formula

a(n) = n * floor((n-1)/2).
From R. J. Mathar, Aug 08 2009: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: x^3*(3+x) / ((1+x)^2*(1-x)^3). (End)
a(n) = binomial(n,2) - (n/2) * ((n+1) mod 2). - Wesley Ivan Hurt, Nov 23 2013
E.g.f.: x*(x*cosh(x) + sinh(x)*(x - 1))/2. - Stefano Spezia, Nov 02 2020

Extensions

Name change by Wesley Ivan Hurt, Nov 23 2013

A165920 Number of 2-elements orbits of S3 action on irreducible polynomials of degree 3n, n > 0, over GF(2).

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 6, 10, 19, 33, 62, 112, 210, 387, 728, 1360, 2570, 4845, 9198, 17459, 33288, 63519, 121574, 232960, 447392, 860265, 1657009, 3195465, 6170930, 11930100, 23091222, 44738560, 86767016, 168428805, 327235602, 636289024, 1238188770, 2411205111, 4698767640, 9162588158, 17878237850
Offset: 1

Views

Author

Jean Francis Michon, Philippe Ravache (philippe.ravache(AT)univ-rouen.fr), Sep 30 2009

Keywords

Comments

Arndt's PARI code computes a(n) as the sum, divided by n, of every 3rd term in row n of L = A050186 = Möbius transform of binomials, starting with k = (1-n) mod 3 (nonnegative remainder), where k = 0 and k = n give L(n, k) = 0 and can be omitted. Cf. A053727, EXAMPLE and second PROGRAM. - M. F. Hasler, Sep 27 2018

Examples

			Illustrating computation via L = A050186, cf. COMMENTS: a(1) = [L(1,0)] = 0. a(2) = [L(2,2)] = 0. a(3) = L(3,1)/3 = 3/3 = 1. a(4) = ([L(4,0)] + L(4,3))/4 = 4/4 = 1. a(5) = (L(5,2) + [L(5,5)])/5 = 10/5 = 2. In [...] are terms L(n,0) = L(n,n) = 0.
		

Crossrefs

This sequence is the half of A165912 (the number of alternate polynomials). A001037 is the enumeration by degree of the polynomials of I. A000048 is the number of 3-elements orbits of S3 action on I.

Programs

  • Maple
    f:= proc(n) local D,d;
      D:=remove(d -> (n/3/d)::integer, numtheory:-divisors(n));
      add(numtheory:-mobius(n/d)*(2^d - (-1)^d),d=D)/(3*n)
    end proc:
    map(f, [$1..100]); # Robert Israel, Jul 14 2019
  • Mathematica
    a[n_] := Sum[If[Mod[n/d, 3] == 0, 0, MoebiusMu[n/d]*(2^d - (-1)^d)/(3n)], {d, Divisors[n]}];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 02 2023 *)
  • PARI
    L(n, k) = sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d, k/d) );
    a(n) = sum(k=0, n, if( (n+k)%3==1, L(n, k), 0 ) ) / n;
    vector(55,n,a(n))
    /* Joerg Arndt, Jun 28 2012 */
    
  • PARI
    A165920(n,k=(1-n)%3)=sum(i=0,(n-k)\3,A050186(n,k+3*i))\n \\ For illustration. - M. F. Hasler, Sep 30 2018

Formula

a(n) = (sum_{d|n, n/d != 0 mod 3} mu(n/d)*(2^d - (-1)^d))/(3n).

A011956 Number of close-packings with layer-number 3n and space group R3m.

Original entry on oeis.org

1, 2, 4, 10, 21, 42, 84, 164, 322, 620, 1200, 2300, 4429, 8482, 16303, 31259, 60105, 115472, 222332, 428106, 825774, 1593669, 3080004, 5956902, 11534689, 22352962, 43361663, 84181720, 163574114, 318079104, 619007004, 1205471654, 2349209058, 4581032192
Offset: 7

Views

Author

Keywords

Comments

Last column of Table 4 in McLarnan (1981), p. 277. See there for more information. - M. F. Hasler, May 26 2025

Crossrefs

Programs

  • Mathematica
    fa[p_, q_] := fa[p, q] = (p+q-1)!/(p!q!) - Sum[fa[p/d, q/d]/d, {d, Rest[Intersection@@(Divisors/@{p, q})]}];
    fb[p_, q_] := fb[p, q] = (Quotient[p, 2]+Quotient[q, 2])!/(Quotient[p, 2]!Quotient[q, 2]!) - Sum[fb[p/d, q/d], {d, Rest[Intersection@@(Divisors/@{p, q})]}];
    rh[n_] := Sum[fa[n-q, q]+fb[n-q, q], {q, Select[Range[n/2], !Divisible[n-2#, 3]&]}] / 2; (* A371992 *)
    fSO[n_] := Sum[fb[2n+1-q,q], {q, Select[Range[n+1,2n], !Divisible[2n+1-2#,3]&]}];(*A011954*)
    fb2[p_, q_] := fb2[p, q] = (p+q)!/(p!q!) - Sum[fb2[p/d, q/d], {d, Rest[Intersection@@(Divisors/@{p, q})]}]; (*A050186(p+q, p)*)
    fO[n_] := Sum[fb[2n-q, q] - If[EvenQ@q, fb2[n-q/2, q/2] - If[OddQ@n, fb[n-q/2, q/2], 0], 0] / 2, {q, Select[Range[n+1, 2n-1], !Divisible[n-#, 3]&]}]; (*A011955*)
    a[n_] := rh[n] - If[OddQ@n, fSO[(n-1)/2], fO[n/2]+fO[n/2-1]];
    Table[a[n],{n,7,50}] (* Andrei Zabolotskii, May 30 2025 *)
  • PARI
    apply( {A011956(n) = A371992(n) - if(n%2,A011954(n\2), A011955(n/2)+A011955(n/2-1))}, [7..20]) \\ M. F. Hasler, May 27 2025
    
  • Python
    def A011956(n): return A371992(n) - (A011954(n//2) if n&1 else A011955(n//2)+A011955(n//2-1))
    # M. F. Hasler, May 27 2025

Formula

a(n) = A371992(n) - A011954((n-1)/2) - A011955(n/2) - A011955(n/2-1), where the terms with non-integer indices are set to 0. - Andrei Zabolotskii and M. F. Hasler, May 27 2025

Extensions

Name and offset corrected by Andrei Zabolotskii, Feb 14 2024
Name changed by M. F. Hasler, May 26 2025
Terms a(17) onwards from Andrei Zabolotskii, May 30 2025

A053727 Triangle T(n,k) = Sum_{d|gcd(n,k)} mu(d)*C(n/d,k/d) (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 2, 0, 3, 3, 0, 4, 4, 4, 0, 5, 10, 10, 5, 0, 6, 12, 18, 12, 6, 0, 7, 21, 35, 35, 21, 7, 0, 8, 24, 56, 64, 56, 24, 8, 0, 9, 36, 81, 126, 126, 81, 36, 9, 0, 10, 40, 120, 200, 250, 200, 120, 40, 10, 0, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 0, 12, 60
Offset: 1

Views

Author

N. J. A. Sloane, Mar 24 2000

Keywords

Comments

Triangle of number of primitive words over {0,1} of length n that contain k 1's, for n,k >= 1. - Benoit Cloitre, Jun 08 2004

Examples

			Triangle begins
  1;
  2,  0;
  3,  3,  0;
  4,  4,  4,  0;
  5, 10, 10,  5,  0;
  6, 12, 18, 12,  6,  0;
  ...
		

References

  • J.-P. Allouche and J. Shallit, Automatic sequences, Cambridge University Press, 2003, p. 29.

Crossrefs

Cf. A042979, A042980. T(2n, n), T(2n+1, n) match A007727, A001700, respectively. Row sums match A027375.
Same triangle as A050186 except this one does not include column 0.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[GCD[k, n], MoebiusMu[#] Binomial[n/#, k/#] &]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    T(n,k)=sumdiv(gcd(k,n),d,moebius(d)*binomial(n/d,k/d)) \\ Benoit Cloitre, Jun 08 2004
Previous Showing 11-15 of 15 results.