cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 254 results. Next

A334868 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j) for all i, j >= 1, where f(1) = 0 and for n > 1, f(n) = -1 if n is in A050376, and f(n) = A334870(n) otherwise.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 8, 2, 2, 9, 2, 10, 11, 12, 2, 13, 2, 14, 15, 16, 2, 17, 2, 18, 19, 20, 21, 22, 2, 23, 24, 25, 2, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 2, 40, 41, 6, 42, 43, 2, 44, 45, 46, 2, 47, 2, 48, 49, 50, 51, 52, 2, 53, 2, 54, 2, 55, 56, 57, 58, 59, 2, 60, 61, 62, 63, 64, 65, 66, 2, 67, 68, 8, 2, 69, 2, 70, 71
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2020

Keywords

Comments

For all i, j: A305979(i) = A305979(j) => a(i) = a(j) => A334872(i) = A334872(j).

Crossrefs

Cf. A050376 (positions of 2's), A305979, A334869, A334870, A334872.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    ispow2(n) = (n && !bitand(n,n-1));
    A302777(n) = ispow2(isprimepower(n));
    A334870(n) = if(issquare(n),sqrtint(n),my(c=core(n), m=n); forprime(p=2, , if(!(c % p), m/=p; break, m*=p)); (m));
    A334868aux(n) = if(1==n,0,if(A302777(n),-1,A334870(n)));
    v334868 = rgs_transform(vector(up_to,n,A334868aux(n)));
    A334868(n) = v334868[n];

A335428 Prime exponent of the first Fermi-Dirac factor (number of form p^(2^k), A050376) reached, when starting from n and iterating with A334870, with a(1) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 1, 2, 2, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 26 2020

Keywords

Examples

			For n=27, when iterating with A334870, we obtain the path 27 -> 18 -> 9, with that 9 being the first prime power encountered that has an exponent of the form 2^k, as 9 = 3^2, thus a(27) = 2. See the binary tree A334860 or A334866 for how such paths go.
For n=900, when iterating with A334870 we obtain the path 900 -> 30 -> 15 -> 10 -> 5, and 5^1 is finally a prime power with an exponent that is two's power, thus a(900) = 1. Note that 900 is the first such position of 1 in this sequence that is not listed in A333634.
		

Crossrefs

Programs

  • PARI
    A209229(n) = (n && !bitand(n,n-1));
    A302777(n) = A209229(isprimepower(n));
    A334870(n) = if(issquare(n),sqrtint(n),my(c=core(n), m=n); forprime(p=2, , if(!(c % p), m/=p; break, m*=p)); (m));
    A335428(n) = { while(n>1 && !A302777(n), n = A334870(n)); isprimepower(n); };
    
  • PARI
    \\ Faster, A209229 and A302777 like in above:
    A335428(n) = if(1==n,0, while(!A302777(n), if(issquarefree(n), return(1)); if(issquare(n), n = sqrtint(n), n /= core(n))); isprimepower(n));

A050379 Number of ordered factorizations of n into members of A050376.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 5, 1, 2, 2, 6, 1, 5, 1, 5, 2, 2, 1, 10, 2, 2, 3, 5, 1, 6, 1, 10, 2, 2, 2, 14, 1, 2, 2, 10, 1, 6, 1, 5, 5, 2, 1, 22, 2, 5, 2, 5, 1, 10, 2, 10, 2, 2, 1, 18, 1, 2, 5, 18, 2, 6, 1, 5, 2, 6, 1, 32, 1, 2, 5, 5, 2, 6, 1, 22, 6, 2, 1, 18, 2, 2, 2, 10, 1, 18, 2, 5, 2, 2, 2
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3 * 3 and 375 = 3 * 5^3 both have prime signature (3,1).

Crossrefs

Programs

  • Maple
    read(transforms) :
    L := [1] :
    for n from 2 to 100  do
        if isA050376(n) then
            L := [op(L),-1] ;
        else
            L := [op(L),0] ;
        end if;
    end do :
    a050379 := DIRICHLETi(L) ; # R. J. Mathar, May 26 2017
  • PARI
    A064547(n) = {my(f = factor(n)[, 2]); sum(k=1, #f, hammingweight(f[k])); } \\ Michel Marcus, Feb 10 2016
    isA050376(n) = ((1==omega(n)) && (1==A064547(n))); \\ Checking that omega(n) is 1 is just an optimization here.
    A050379(n) = if(1==n,n,sumdiv(n,d,if(dA050376(n/d)*A050379(d),0))); \\ Antti Karttunen, Oct 20 2017

Formula

Dirichlet g.f.: 1/(1-B(s)) where B(s) is D.g.f. of characteristic function of A050376.
a(p^k) = A023359(k), for any prime p.
a(A002110(n)) = A000142(n) = n!.
a(n) = A050380(A101296(n)). - R. J. Mathar, May 26 2017

A176620 Primes p for which the factorization of p! over distinct terms of A050376 does not contain 2.

Original entry on oeis.org

7, 11, 13, 19, 31, 37, 41, 47, 59, 61, 67, 73, 79, 97, 103, 107, 109, 127, 131, 137, 151, 157, 167, 173, 179, 181, 191, 193, 199, 211, 223, 227, 229, 233, 239, 241, 251, 271, 283, 307, 313, 331, 367, 379, 397, 409, 419, 421, 431, 433, 439, 443, 457, 463, 487
Offset: 1

Views

Author

Vladimir Shevelev, Apr 22 2010

Keywords

Comments

Equivalent definition: primes p for which A007814(p!) is even. Apparently, the sequence is A027697 without the 2 (see A014499). [R. J. Mathar, Oct 26 2010]

Crossrefs

Programs

  • Mathematica
    Select[Range[500], PrimeQ[#] && EvenQ @ IntegerExponent[#!, 2] &]  (* Amiram Eldar, Sep 13 2019 *)

Extensions

Corrected (37 added, 41 added, 43 removed...) and extended by R. J. Mathar, Oct 26 2010

A181970 Places of nonprimes in A050376.

Original entry on oeis.org

3, 6, 9, 13, 20, 28, 37, 47, 63, 71, 83, 111, 127, 160, 177, 235, 280, 301, 348, 377, 430, 509, 542, 633, 700, 731, 838, 875, 915, 1030, 1194, 1284, 1327, 1415, 1458, 1559, 1752, 1915, 2015, 2181, 2231, 2531, 2590, 2773, 2960, 3089, 3154, 3289, 3485, 3562, 3919, 3997, 4142
Offset: 1

Views

Author

Vladimir Shevelev, Apr 06 2012

Keywords

Comments

Or numbers not expressed in the form pi(p) + pi(sqrt(p)) + pi((sqrt(sqrt(p)))) +... with prime p.

Examples

			Show that 28 not expressed in form pi(p) + pi(sqrt(p)) + pi((sqrt(sqrt(p)))) +... with prime p. Indeed, for p=79, this sum is 22+4+1=27, while for p=83, it is 23+4+2=29.
		

Crossrefs

Programs

  • PARI
    first_few(lim)=my(v=List(apply(n->n^2, primes(primepi(sqrtint(lim))))),u,t); forprime(p=2,(lim+.5)^(1/4),t=p^2;while((t=t^2)<=lim,listput(v,t)));listput(v,1);v=vecsort(Vec(v));u=vector(#v-1,i,sum(j=v[i]+1,v[i+1]-1,isprime(j)));u[1]++;for(i=2, #u, u[i]+=u[i-1]+1);u \\ Charles R Greathouse IV, Apr 10 2012
    
  • Python
    from sympy import primepi, integer_nthroot
    def A181970(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x,1<Chai Wah Wu, Feb 18-19 2025

Formula

a(n) ~ 0.5 n^2 log n. - Charles R Greathouse IV, Apr 11 2012

Extensions

a(30)-a(53) from Charles R Greathouse IV, Apr 10 2012

A228518 a(n) is the least r > 1 for which the interval (r*n, r*(n+1)) contains no terms of A050376 or a(n) = 0 if no such r exists.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 4, 0, 2, 3, 0, 2, 0, 6, 2, 2, 3, 2, 7, 3, 2, 4, 0, 2, 7, 2, 2, 4, 3, 2, 2, 4, 2, 4, 4, 2, 2, 3, 5, 3, 2, 2, 3, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 0, 2, 2, 2, 5, 2, 2, 4, 2, 5, 2, 2, 3, 3, 2, 2, 2, 2, 4, 4, 2, 2, 3, 2, 2, 3, 2, 4, 3, 2, 3, 2
Offset: 1

Views

Author

Keywords

Comments

It is an a Fermi-Dirac analog of A218831, since terms of A050376 play a role of primes in Fermi-Dirac arithmetic (see comments in A050376).
Conjecture: a(n) = 0 iff n = 1, 2, 3, 4, 5, 6, 9, 12, 14, 24, 56.
A proof that the interval(r*n, r*(n+1)) for r > 1 always contains a term from A050376 for n = 1, 2, 3, 4, 5, 6, 9, 12, 14, 24, 56 uses similar methods of analog of Ramanujan numbers (cf. A228520) and their generalization.

Crossrefs

Formula

If a(n)*A218831(n) is not 0, then a(n) >= A218831(n).
If a(n)*A188672(n) is not 0, then a(n) <= A188672(n).

A241289 Numbers n for which in the factorization of n! over distinct terms of A050376, the numbers of prime and nonprime terms are equal.

Original entry on oeis.org

7, 8, 9, 13, 18, 22, 37, 57, 71
Offset: 1

Views

Author

Vladimir Shevelev, Apr 18 2014

Keywords

Comments

a(10), if it exists, should be more than 5000. Is a(9)=71 the last term of sequence? - Peter J. C. Moses, Apr 19 2014
One can prove that a(9)=71 indeed is the last term of this sequence. - Vladimir Shevelev, Apr 19 2014.

Examples

			7 is in the sequence, since 7! in the considered factorization is 5*7*9*16, and here we have 2 primes and 2 nonprimes.
		

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].

Crossrefs

Extensions

Terms a(7) - a(9) from Peter J. C. Moses, Apr 19 2014

A242165 Smallest k>=0, such that n+/-k are both Fermi-Dirac primes (A050376).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 3, 2, 0, 0, 1, 0, 3, 2, 3, 0, 1, 0, 3, 2, 3, 0, 1, 0, 9, 4, 3, 6, 5, 0, 9, 2, 3, 0, 1, 0, 3, 2, 3, 0, 1, 0, 3, 2, 9, 0, 5, 6, 3, 4, 9, 0, 1, 0, 9, 4, 3, 6, 5, 0, 15, 2, 3, 0, 1, 0, 7, 4, 3, 4, 5, 0, 1, 0, 1, 0, 5, 4, 3, 14, 9, 0, 7, 10, 9, 4, 13, 6, 7, 0
Offset: 2

Views

Author

Vladimir Shevelev, May 05 2014

Keywords

Comments

The existence of a(n)>=0 for all n >= 2 is equivalent to the Goldbach conjecture in Fermi-Dirac arithmetic (cf. comment in A241927) that every even number >= 4 is a sum of two terms of A050376 (it is slightly weaker than Goldbach conjecture for primes).

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 (in Russian; MR 2000f: 11097, pp. 3912-3913).

Crossrefs

Formula

a(A050376(n)) = 0.

A244343 Least even k such that sfdf(k-3) > sfdf(k-1) >= A050376(n), where sfdf(n) is the smallest Fermi-Dirac factor of n (A223490).

Original entry on oeis.org

16, 46, 46, 64, 100, 254, 326, 392, 392, 590, 776, 776, 1190, 1520, 1814, 2420, 2624, 3764, 3764, 3764, 4454, 4454, 4892, 5752, 6400, 6400, 7210, 9380, 9524, 11414, 11414, 13190, 13190, 13190, 18272, 18272, 19940, 20414, 20414, 21824, 24614, 24614, 25592
Offset: 2

Views

Author

Keywords

Comments

a(n) is a Fermi-Dirac analog of A242719.

Examples

			If k is even such that k-1 is either 1 or in A050376, then k cannot be required. Thus, if n=2, then k=2,4,6,8,10,12,14 are not required, while for k=16 we have sfdf(16-3) = 13 > sfdf(16-1) = 3 = A050376(2). So a(2)=16.
		

Crossrefs

A248713 a(1)=1; starting with n>1, concatenate distinct divisors which are in A050376 in increasing order and repeat until a term of A050376 is reached (a(n)=0 if no term of A050376 is ever reached).

Original entry on oeis.org

1, 2, 3, 4, 5, 23, 7, 731173, 9, 25, 11, 31397, 13, 313, 1129, 16, 17, 29, 19, 59, 37, 211, 23, 731173, 25, 3251, 313, 47, 29, 547, 31, 313289, 311, 31397, 1129, 49, 37, 373, 313, 961, 41, 379, 43, 3137, 59, 223, 47, 479, 49, 71443, 317, 31123, 53, 239, 773
Offset: 1

Views

Author

Vladimir Shevelev, Oct 12 2014

Keywords

Comments

Fermi-Dirac analog of A037274 (terms of A050376 are Fermi-Dirac primes).

Examples

			We have 40 = 2*4*5 -> 245 = 5*49 -> 549 = 9*61 -> 961 is in A050376. So a(40) = 961.
		

Crossrefs

Extensions

a(8) and a(34) corrected by Hiroaki Yamanouchi, Oct 13 2014
Previous Showing 41-50 of 254 results. Next