cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A331933 Number of semi-lone-child-avoiding rooted trees with at most one distinct non-leaf branch directly under any vertex.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 12, 18, 33, 52, 90, 142, 242, 384, 639, 1028, 1688, 2716, 4445, 7161, 11665, 18839, 30595, 49434, 80199, 129637, 210079, 339750, 550228, 889978, 1440909, 2330887, 3772845, 6103823, 9878357, 15982196, 25863454, 41845650, 67713550, 109559443
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.

Examples

			The a(1) = 1 through a(8) = 18 trees:
  o  (o)  (oo)  (ooo)   (oooo)    (ooooo)    (oooooo)
                (o(o))  (o(oo))   (o(ooo))   (o(oooo))
                        (oo(o))   (oo(oo))   (oo(ooo))
                        ((o)(o))  (ooo(o))   (ooo(oo))
                                  (o(o)(o))  (oooo(o))
                                  (o(o(o)))  ((oo)(oo))
                                             (o(o(oo)))
                                             (o(oo(o)))
                                             (oo(o)(o))
                                             (oo(o(o)))
                                             ((o)(o)(o))
                                             (o((o)(o)))
		

Crossrefs

Not requiring lone-child-avoidance gives A320222.
The non-semi version is A320268.
Matula-Goebel numbers of these trees are A331936.
Achiral trees are A003238.
Semi-identity trees are A306200.
Numbers S with at most one distinct prime index in S are A331912.
Semi-lone-child-avoiding rooted trees are A331934.

Programs

  • Mathematica
    sseo[n_]:=Switch[n,1,{{}},2,{{{}}},_,Join@@Function[c,Select[Union[Sort/@Tuples[sseo/@c]],Length[Union[DeleteCases[#,{}]]]<=1&]]/@Rest[IntegerPartitions[n-1]]];
    Table[Length[sseo[n]],{n,10}]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(i=2, n-2, ((n-1)\i)*v[i])); v} \\ Andrew Howroyd, Feb 09 2020

Formula

a(n) = 1 + Sum_{i=2..n-2} floor((n-1)/i)*a(i). - Andrew Howroyd, Feb 09 2020

Extensions

Terms a(31) and beyond from Andrew Howroyd, Feb 09 2020

A331871 Matula-Goebel numbers of lone-child-avoiding locally disjoint rooted trees.

Original entry on oeis.org

1, 4, 8, 14, 16, 28, 32, 38, 49, 56, 64, 76, 86, 98, 106, 112, 128, 152, 172, 196, 212, 214, 224, 256, 262, 304, 326, 343, 344, 361, 392, 424, 428, 448, 454, 512, 524, 526, 608, 622, 652, 686, 688, 722, 766, 784, 848, 856, 886, 896, 908, 1024, 1042, 1048, 1052
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2020

Keywords

Comments

First differs from A320269 in having 1589, the Matula-Goebel number of the tree ((oo)((oo)(oo))).
First differs from A331683 in having 49.
A rooted tree is locally disjoint if no child of any vertex has branches overlapping the branches of any other (inequivalent) child of the same vertex.
Lone-child-avoiding means there are no unary branchings.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one and all nonprime numbers whose distinct prime indices are pairwise coprime and already belong to the sequence, where a singleton is always considered to be pairwise coprime. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of all lone-child-avoiding locally disjoint rooted trees together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   14: (o(oo))
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   38: (o(ooo))
   49: ((oo)(oo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   86: (o(o(oo)))
   98: (o(oo)(oo))
  106: (o(oooo))
  112: (oooo(oo))
  128: (ooooooo)
  152: (ooo(ooo))
  172: (oo(o(oo)))
  196: (oo(oo)(oo))
The sequence of terms together with their prime indices begins:
     1: {}                  212: {1,1,16}
     4: {1,1}               214: {1,28}
     8: {1,1,1}             224: {1,1,1,1,1,4}
    14: {1,4}               256: {1,1,1,1,1,1,1,1}
    16: {1,1,1,1}           262: {1,32}
    28: {1,1,4}             304: {1,1,1,1,8}
    32: {1,1,1,1,1}         326: {1,38}
    38: {1,8}               343: {4,4,4}
    49: {4,4}               344: {1,1,1,14}
    56: {1,1,1,4}           361: {8,8}
    64: {1,1,1,1,1,1}       392: {1,1,1,4,4}
    76: {1,1,8}             424: {1,1,1,16}
    86: {1,14}              428: {1,1,28}
    98: {1,4,4}             448: {1,1,1,1,1,1,4}
   106: {1,16}              454: {1,49}
   112: {1,1,1,1,4}         512: {1,1,1,1,1,1,1,1,1}
   128: {1,1,1,1,1,1,1}     524: {1,1,32}
   152: {1,1,1,8}           526: {1,56}
   172: {1,1,14}            608: {1,1,1,1,1,8}
   196: {1,1,4,4}           622: {1,64}
		

Crossrefs

Not requiring local disjointness gives A291636.
Not requiring lone-child avoidance gives A316495.
A superset of A320269.
These trees are counted by A331680.
The semi-identity tree version is A331683.
The version containing 2 is A331873.

Programs

  • Mathematica
    msQ[n_]:=n==1||!PrimeQ[n]&&(PrimePowerQ[n]||CoprimeQ@@PrimePi/@First/@FactorInteger[n])&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[1000],msQ]

Formula

Intersection of A291636 and A316495.

A331991 Number of semi-lone-child-avoiding achiral rooted trees with n vertices.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 5, 4, 4, 1, 7, 1, 7, 5, 6, 1, 7, 3, 7, 5, 7, 1, 13, 1, 8, 6, 6, 6, 10, 1, 9, 7, 9, 1, 15, 1, 12, 12, 8, 1, 12, 4, 13, 6, 11, 1, 15, 7, 13, 9, 9, 1, 17, 1, 15, 15, 9, 8, 21, 1, 13, 8, 16, 1, 18, 1, 12, 16, 11, 8, 21, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 06 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf.
In an achiral rooted tree, the branches of any given vertex are all equal.

Examples

			The a(n) trees for n = 2, 3, 5, 7, 11, 13:
  (o)  (oo)  (oooo)    (oooooo)     (oooooooooo)        (oooooooooooo)
             ((o)(o))  ((oo)(oo))   ((oooo)(oooo))      ((ooooo)(ooooo))
                       ((o)(o)(o))  ((o)(o)(o)(o)(o))   ((ooo)(ooo)(ooo))
                                    (((o)(o))((o)(o)))  ((oo)(oo)(oo)(oo))
                                                        ((o)(o)(o)(o)(o)(o))
		

Crossrefs

Matula-Goebel numbers of these trees are A331992.
The fully lone-child-avoiding case is A167865.
The semi-achiral version is A331933.
Not requiring achirality gives A331934.
The identity tree version is A331964.
The semi-identity tree version is A331993.
Achiral rooted trees are counted by A003238.
Lone-child-avoiding semi-achiral trees are A320268.

Programs

  • Mathematica
    ab[n_]:=If[n<=2,1,Sum[ab[d],{d,Most[Divisors[n-1]]}]];
    Array[ab,100]

Formula

a(1) = a(2) = 1; a(n + 1) = Sum_{d|n, d 1.
G.f. A(x) satisfies: A(x) = x * (1 + (1/(1 + x)) * Sum_{k>=1} A(x^k)). - Ilya Gutkovskiy, Feb 25 2020

A331992 Matula-Goebel numbers of semi-lone-child-avoiding achiral rooted trees.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 27, 32, 49, 64, 81, 128, 243, 256, 343, 361, 512, 529, 729, 1024, 2048, 2187, 2401, 2809, 4096, 6561, 6859, 8192, 10609, 12167, 16384, 16807, 17161, 19683, 32768, 51529, 59049, 65536, 96721, 117649, 130321, 131072, 148877, 175561, 177147
Offset: 1

Views

Author

Gus Wiseman, Feb 06 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf.
In an achiral rooted tree, the branches of any given vertex are all equal.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, two, and all numbers of the form prime(j)^k where k > 1 and j is already in the sequence.

Examples

			The sequence of all semi-lone-child-avoiding achiral rooted trees together with their Matula-Goebel numbers begins:
     1: o
     2: (o)
     4: (oo)
     8: (ooo)
     9: ((o)(o))
    16: (oooo)
    27: ((o)(o)(o))
    32: (ooooo)
    49: ((oo)(oo))
    64: (oooooo)
    81: ((o)(o)(o)(o))
   128: (ooooooo)
   243: ((o)(o)(o)(o)(o))
   256: (oooooooo)
   343: ((oo)(oo)(oo))
   361: ((ooo)(ooo))
   512: (ooooooooo)
   529: (((o)(o))((o)(o)))
   729: ((o)(o)(o)(o)(o)(o))
  1024: (oooooooooo)
		

Crossrefs

Except for two, a subset of A025475 (nonprime prime powers).
Not requiring achirality gives A331935.
The semi-achiral version is A331936.
The fully-chiral version is A331963.
The semi-chiral version is A331994.
The non-semi version is counted by A331967.
The enumeration of these trees by vertices is A331991.
Achiral rooted trees are counted by A003238.
MG-numbers of achiral rooted trees are A214577.

Programs

  • Mathematica
    msQ[n_]:=n<=2||!PrimeQ[n]&&Length[FactorInteger[n]]<=1&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[10000],msQ]

Formula

Intersection of A214577 (achiral) and A331935 (semi-lone-child-avoiding).

A318187 Number of totally transitive rooted trees with n leaves.

Original entry on oeis.org

2, 2, 4, 8, 16, 32, 62, 122, 234, 451, 857, 1630, 3068, 5772, 10778, 20093, 37259
Offset: 1

Views

Author

Gus Wiseman, Aug 20 2018

Keywords

Comments

A rooted tree is totally transitive if every branch of the root is totally transitive and every branch of a branch of the root is also a branch of the root.

Examples

			The a(5) = 16 totally transitive rooted trees with 5 leaves:
  (o(o)(o(o)(o)))
  (o(o)(o)(o(o)))
  (o(o)(o)(o)(o))
  (o(o)(oo(o)))
  (oo(o)(o(o)))
  (o(o)(o)(oo))
  (oo(o)(o)(o))
  (o(o)(ooo))
  (o(oo)(oo))
  (oo(o)(oo))
  (ooo(o)(o))
  (o(oooo))
  (oo(ooo))
  (ooo(oo))
  (oooo(o))
  (ooooo)
		

Crossrefs

Programs

  • Mathematica
    totralv[n_]:=totralv[n]=If[n==1,{{},{{}}},Join@@Table[Select[Union[Sort/@Tuples[totralv/@c]],Complement[Union@@#,#]=={}&],{c,Select[IntegerPartitions[n],Length[#]>1&]}]];
    Table[Length[totralv[n]],{n,8}]

A031148 Number of series-reduced planted trees with n leaves of 2 colors and no symmetries.

Original entry on oeis.org

2, 1, 2, 5, 14, 43, 138, 455, 1540, 5305, 18546, 65616, 234546, 845683, 3072350, 11235393, 41326470, 152793376, 567518950, 2116666670, 7924062430, 29765741831, 112157686170, 423809991041, 1605622028100
Offset: 1

Views

Author

Keywords

Crossrefs

Essentially the same as A052301. Cf. A000669, A001678, A038075, A050381.

Formula

Doubles (index 2+) under WEIGH transform.

A319377 Number of series-reduced rooted trees with n leaves of exactly two colors.

Original entry on oeis.org

1, 6, 30, 146, 719, 3590, 18283, 94648, 497757, 2652898, 14307845, 77958746, 428588051, 2374676854, 13247984959, 74357762790, 419604029622, 2379243477538, 13549087798391, 77458553063930, 444383895880897, 2557639072274418, 14763596994726379, 85449948037167684
Offset: 2

Views

Author

Andrew Howroyd, Sep 17 2018

Keywords

Crossrefs

Column 2 of A319376.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
    a:= n-> A(n, 2) -2*A(n, 1):
    seq(a(n), n=2..30);  # Alois P. Heinz, Sep 18 2018
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j]*b[n - i*j, i - 1, k], {j, 0, n/i}]]];
    A[n_, k_] := If[n < 2, n*k, b[n, n - 1, k]];
    a[n_] := A[n, 2] - 2*A[n, 1];
    a /@ Range[2, 30] (* Jean-François Alcover, Sep 24 2019, after Alois P. Heinz *)
  • PARI
    \\ here R(n,k) is k-th column of A319254.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v}
    seq(n)={(R(n,2)-2*R(n,1))[2..n]}

Formula

a(n) = A050381(n) - 2*A000669(n).

A339646 Number of inequivalent leaf colorings of series-reduced planted trees with n leaves using at most 2 colors.

Original entry on oeis.org

1, 2, 5, 22, 85, 402, 1885, 9453, 48090, 251476, 1333517, 7177585, 39048327, 214523186, 1188037961, 6626311639, 37186187183, 209826251622, 1189699762371, 6774803376279, 38730124684829, 222194778028278, 1278828889503773, 7381829822338301, 42725078403203912
Offset: 1

Views

Author

Andrew Howroyd, Dec 16 2020

Keywords

Comments

Equivalence is up to permutation of the colors.

Examples

			a(1) = 1: 1.
a(2) = 2: (11), (12).
a(3) = 5: (111), (112), (1(11)), (1(12)), (1(22)).
		

Crossrefs

The case that colors may not be interchanged is A050381.

Programs

  • PARI
    \\ See A339645 for cycleIndexSeries and InequivalentColoringsSeq.
    InequivalentColoringsSeq(cycleIndexSeries(20),2)

Formula

a(n) = A339647(n) - A000669(n).
Previous Showing 11-18 of 18 results.