cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A321834 a(n) = Sum_{d|n, n/d==1 mod 4} d^10 - Sum_{d|n, n/d==3 mod 4} d^10.

Original entry on oeis.org

1, 1024, 59048, 1048576, 9765626, 60465152, 282475248, 1073741824, 3486725353, 10000001024, 25937424600, 61916315648, 137858491850, 289254653952, 576640684048, 1099511627776, 2015993900450, 3570406761472, 6131066257800, 10240001048576
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A101455.
Cf. A321807 - A321836 for similar sequences.
Glaisher's E'_i (i=0..12): A002654, A050469, A050470, A050471, A050468, A321829, A321830, A321831, A321832, A321833, this sequence, A321835, A321836.

Programs

  • Mathematica
    s[n_,r_] := DivisorSum[n, #^10 &, Mod[n/#,4]==r &]; a[n_] := s[n,1] - s[n,3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(10*e+10) - s[p]^(e+1))/(p^10 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    apply( a(n)=sumdiv(n, d, if(bittest(n\d,0),(2-n\d%4)*d^10)), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^10*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
From Amiram Eldar, Nov 04 2023: (Start)
Multiplicative with a(p^e) = (p^(10*e+10) - A101455(p)^(e+1))/(p^10 - A101455(p)).
Sum_{k=1..n} a(k) ~ c * n^11 / 11, where c = beta(11) = 50521*Pi^11/14863564800 = 0.999994374973... and beta is the Dirichlet beta function. (End)
a(n) = Sum_{d|n} (n/d)^10*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024

A321835 a(n) = Sum_{d|n, n/d==1 mod 4} d^11 - Sum_{d|n, n/d==3 mod 4} d^11.

Original entry on oeis.org

1, 2048, 177146, 4194304, 48828126, 362795008, 1977326742, 8589934592, 31380882463, 100000002048, 285311670610, 743004176384, 1792160394038, 4049565167616, 8649707208396, 17592186044416, 34271896307634, 64268047284224, 116490258898218
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A101455.
Cf. A321807 - A321836 for related sequences.
Glaisher's E'_i (i=0..12): A002654, A050469, A050470, A050471, A050468, A321829, A321830, A321831, A321832, A321833, A321834, this sequence, A321836.

Programs

  • Mathematica
    s[n_,r_] := DivisorSum[n, #^11 &, Mod[n/#,4]==r &]; a[n_] := s[n,1] - s[n,3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(11*e+11) - s[p]^(e+1))/(p^11 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    apply( a(n)=sumdiv(n,d,if(bittest(n\d,0),(2-n\d%4)*d^11)), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^11*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
From Amiram Eldar, Nov 04 2023: (Start)
Multiplicative with a(p^e) = (p^(11*e+11) - A101455(p)^(e+1))/(p^11 - A101455(p)).
Sum_{k=1..n} a(k) ~ c * n^12 / 12, where c = beta(12) = 0.99999812235..., and beta is the Dirichlet beta function. (End)
a(n) = Sum_{d|n} (n/d)^11*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024

A050460 a(n) = Sum_{d|n, n/d=1 mod 4} d.

Original entry on oeis.org

1, 2, 3, 4, 6, 6, 7, 8, 10, 12, 11, 12, 14, 14, 18, 16, 18, 20, 19, 24, 22, 22, 23, 24, 31, 28, 30, 28, 30, 36, 31, 32, 34, 36, 42, 40, 38, 38, 42, 48, 42, 44, 43, 44, 60, 46, 47, 48, 50, 62, 54, 56, 54, 60, 66, 56, 58, 60, 59, 72, 62, 62, 73, 64, 84, 68
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Not multiplicative: a(3)*a(7) <> a(21), for example.

Crossrefs

Programs

  • Maple
    A050460 := proc(n)
            a := 0 ;
            for d in numtheory[divisors](n) do
                    if (n/d) mod 4 = 1 then
                            a := a+d ;
                    end if;
            end do:
            a;
    end proc:
    seq(A050460(n),n=1..40) ; # R. J. Mathar, Dec 20 2011
  • Mathematica
    a[n_] := DivisorSum[n, Boole[Mod[n/#, 4] == 1]*#&]; Array[a, 70] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    a(n)=sumdiv(n,d,if(n/d%4==1,d)) \\ Charles R Greathouse IV, Dec 04 2013

Formula

G.f.: Sum_{n>0} n*x^n/(1-x^(4*n)). - Vladeta Jovovic, Nov 14 2002
G.f.: Sum_{k>0} x^(4*k-3) / (1 - x^(4*k-3))^2. - Seiichi Manyama, Jun 29 2023
from Amiram Eldar, Nov 05 2023: (Start)
a(n) = A002131(n) - A050464(n).
a(n) = A050469(n) + A050464(n).
a(n) = (A002131(n) + A050469(n))/2.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A222183. (End)

A050464 a(n) = Sum_{d|n, n/d=3 mod 4} d.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 1, 0, 3, 0, 1, 4, 0, 2, 6, 0, 0, 6, 1, 0, 10, 2, 1, 8, 0, 0, 10, 4, 0, 12, 1, 0, 14, 0, 6, 12, 0, 2, 14, 0, 0, 20, 1, 4, 18, 2, 1, 16, 7, 0, 18, 0, 0, 20, 6, 8, 22, 0, 1, 24, 0, 2, 31, 0, 0, 28, 1, 0, 26, 12, 1, 24, 0, 0, 31, 4, 18, 28, 1, 0, 30, 0, 1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, Mod[n/#, 4] == 3 &]; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n)={sumdiv(n, d, d*(n/d%4==3))} \\ Andrew Howroyd, Sep 13 2019

Formula

G.f.: Sum_{k>=1} k*x^(3*k)/(1 - x^(4*k)). - Ilya Gutkovskiy, Sep 13 2019
G.f.: Sum_{k>0} x^(4*k-1) / (1 - x^(4*k-1))^2. - Seiichi Manyama, Jun 29 2023
from Amiram Eldar, Nov 05 2023: (Start)
a(n) = A002131(n) - A050460(n).
a(n) = A050460(n) - A050469(n).
a(n) = (A002131(n) - A050469(n))/2.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A247037. (End)

Extensions

Offset changed to 1 by Ilya Gutkovskiy, Sep 13 2019

A364012 Expansion of Sum_{k>0} k * x^k / (1 + x^(3*k)).

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 8, 6, 9, 9, 11, 9, 14, 16, 15, 11, 17, 18, 20, 13, 24, 21, 23, 18, 26, 28, 27, 24, 29, 27, 32, 22, 33, 33, 40, 27, 38, 40, 42, 25, 41, 48, 44, 31, 45, 45, 47, 33, 57, 47, 51, 42, 53, 54, 56, 48, 60, 57, 59, 39, 62, 64, 72, 43, 70, 63, 68, 49, 69, 72, 71, 54, 74, 76, 78
Offset: 1

Views

Author

Seiichi Manyama, Jul 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := -DivisorSum[n, (-1)^(n/#) * # &, Mod[n/#, 3] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 01 2023 *)
  • PARI
    a(n) = -sumdiv(n, d, (n/d%3==1)*(-1)^(n/d)*d);

Formula

G.f.: Sum_{k>0} (-1)^(k-1) * x^(3*k-2) / (1 - x^(3*k-2))^2.
a(n) = -Sum_{d|n, n/d==1 (mod 3)} (-1)^(n/d) * d.

A322084 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n, n/d==1 (mod 4)} d^k - Sum_{d|n, n/d==3 (mod 4)} d^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 4, 2, 1, 1, 8, 8, 4, 2, 1, 16, 26, 16, 6, 0, 1, 32, 80, 64, 26, 4, 0, 1, 64, 242, 256, 126, 32, 6, 1, 1, 128, 728, 1024, 626, 208, 48, 8, 1, 1, 256, 2186, 4096, 3126, 1280, 342, 64, 7, 2, 1, 512, 6560, 16384, 15626, 7744, 2400, 512, 73, 12, 0, 1, 1024, 19682, 65536, 78126, 46592, 16806, 4096, 703, 104, 10, 0
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,     1,     1,  ...
  1,  2,   4,    8,    16,    32,  ...
  0,  2,   8,   26,    80,   242,  ...
  1,  4,  16,   64,   256,  1024,  ...
  2,  6,  26,  126,   626,  3126,  ...
  0,  4,  32,  208,  1280,  7744,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[j^k x^j/(1 + x^(2 j)), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={sumdiv(n, d, if(d%2, (-1)^((d-1)/2)*(n/d)^k))}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} j^k*x^j/(1 + x^(2*j)).

A326401 Expansion of Sum_{k>=1} k * x^k / (1 + x^k + x^(2*k)).

Original entry on oeis.org

1, 1, 3, 3, 4, 3, 8, 5, 9, 4, 10, 9, 14, 8, 12, 11, 16, 9, 20, 12, 24, 10, 22, 15, 21, 14, 27, 24, 28, 12, 32, 21, 30, 16, 32, 27, 38, 20, 42, 20, 40, 24, 44, 30, 36, 22, 46, 33, 57, 21, 48, 42, 52, 27, 40, 40, 60, 28, 58, 36, 62, 32, 72, 43, 56, 30, 68, 48, 66, 32
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[k x^k/(1 + x^k + x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, # &, MemberQ[{1}, Mod[n/#, 3]] &] - DivisorSum[n, # &, MemberQ[{2}, Mod[n/#, 3]] &], {n, 1, 70}]
    f[p_, e_] := Which[p == 3, p^e, Mod[p, 3] == 1, (p^(e + 1) - 1)/(p - 1), Mod[p, 3] == 2, (p^(e + 1) + (-1)^e)/(p + 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 3, 3^f[i,2], if(f[i,1]%3 == 1, (f[i,1]^(f[i,2]+1) - 1)/(f[i,1] - 1), (f[i,1]^(f[i,2]+1) + (-1)^f[i,2])/(f[i,1] + 1))));} \\ Amiram Eldar, Nov 06 2022

Formula

a(n) = Sum_{d|n, n/d==1 (mod 3)} d - Sum_{d|n, n/d==2 (mod 3)} d.
a(n) = A326399(n) - A326400(n).
Multiplicative with a(3^e) = 3^e, a(p^e) = (p^(e+1) - 1)/(p - 1) if p == 1 (mod 3), and (p^(e+1) + (-1)^e)/(p + 1) if p == 2 (mod 3). - Amiram Eldar, Oct 25 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{primes p == 1 (mod 3)} 1/(1 - 1/p^2) * Product_{primes p == 2 (mod 3)} 1/(1 + 1/p^2) = (1/2) * A175646 * (2*Pi^2/27)/A340577 = 0.3906512064... . - Amiram Eldar, Nov 06 2022

A327122 Expansion of Sum_{k>=1} sigma(k) * x^k / (1 + x^(2*k)), where sigma = A000203.

Original entry on oeis.org

1, 3, 3, 7, 7, 9, 7, 15, 10, 21, 11, 21, 15, 21, 21, 31, 19, 30, 19, 49, 21, 33, 23, 45, 38, 45, 30, 49, 31, 63, 31, 63, 33, 57, 49, 70, 39, 57, 45, 105, 43, 63, 43, 77, 70, 69, 47, 93, 50, 114, 57, 105, 55, 90, 77, 105, 57, 93, 59, 147, 63, 93, 70, 127, 105
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 14 2019

Keywords

Comments

Inverse Moebius transform of A050469.

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[Sum[DivisorSigma[1, k] x^k/(1 + x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    A050469[n_] := DivisorSum[n, # &, MemberQ[{1}, Mod[n/#, 4]] &] - DivisorSum[n, # &, MemberQ[{3}, Mod[n/#, 4]] &]; a[n_] := DivisorSum[n, A050469[#] &]; Table[a[n], {n, 1, 65}]
    f[p_, e_] := If[Mod[p, 4] == 1, (p^(e+2)-(e+2)*p+e+1)/(p-1)^2, (2*p^(e+2) + ((-1)^e-1)*p - ((-1)^e+1))/(2*(p^2-1))]; f[2, e_] := 2^(e+1)-1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 70] (* Amiram Eldar, Aug 28 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(p == 2, 2^(e+1)-1, if(p%4 == 1, (p^(e+2)-(e+2)*p+e+1)/(p-1)^2, (2*p^(e+2) + ((-1)^e-1)*p - ((-1)^e+1))/(2*(p^2-1))))); } \\ Amiram Eldar, Aug 28 2023

Formula

a(n) = Sum_{d|n} A050469(d).
From Amiram Eldar, Aug 28 2023: (Start)
Multiplicative with a(2^e) = 2^(e+1)-1, and if p is an odd prime a(p^e) = (p^(e+2)-(e+2)*p+e+1)/(p-1)^2 if p == 1 (mod 4) and (2*p^(e+2) + ((-1)^e-1)*p - ((-1)^e+1))/(2*(p^2-1)) otherwise.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/12 * (A175647/A243381) = 0.753351504961... . (End)

A327123 Expansion of Sum_{k>=1} phi(k) * x^k / (1 + x^(2*k)), where phi = A000010.

Original entry on oeis.org

1, 1, 1, 2, 5, 1, 5, 4, 5, 5, 9, 2, 13, 5, 5, 8, 17, 5, 17, 10, 5, 9, 21, 4, 25, 13, 13, 10, 29, 5, 29, 16, 9, 17, 25, 10, 37, 17, 13, 20, 41, 5, 41, 18, 25, 21, 45, 8, 37, 25, 17, 26, 53, 13, 45, 20, 17, 29, 57, 10, 61, 29, 25, 32, 65, 9, 65, 34, 21
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 14 2019

Keywords

Comments

Moebius transform of A050469.

Crossrefs

Programs

  • Mathematica
    nmax = 69; CoefficientList[Series[Sum[EulerPhi[k] x^k/(1 + x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    A050469[n_] := DivisorSum[n, # &, MemberQ[{1}, Mod[n/#, 4]] &] - DivisorSum[n, # &, MemberQ[{3}, Mod[n/#, 4]] &]; a[n_] := DivisorSum[n, MoebiusMu[n/#] A050469[#] &]; Table[a[n], {n, 1, 69}]
    f[p_, e_] := If[Mod[p, 4] == 1, p^e, (p^(e+1) - p^e + 2*(-1)^e)/(p+1)]; f[2, e_] := 2^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 70] (* Amiram Eldar, Aug 28 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(p == 2, 2^(e-1), if(p%4 == 1, p^e, (p^(e+1) - p^e + 2*(-1)^e)/(p+1)))); } \\ Amiram Eldar, Aug 28 2023

Formula

a(n) = Sum_{d|n} mu(n/d) * A050469(d).
From Amiram Eldar, Aug 28 2023: (Start)
Multiplicative with a(2^e) = 2^(e-1), and if p is an odd prime a(p^e) = 1 if p == 1 (mod 4) and (p^(e+1) - p^e + 2*(-1)^e)/(p+1) otherwise.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3*G/Pi^2 = 0.278420154533..., and G is Catalan's constant (A006752). (End)
Conjecture: a(n) = Sum_{k=1..n} sin(GCD(k,n) * Pi/2). - Velin Yanev and Vaclav Kotesovec, Jun 01 2024

A350162 a(n) = Sum_{k=1..n} (-1)^(k+1) * floor(n/(2*k-1))^2.

Original entry on oeis.org

1, 4, 8, 15, 25, 33, 45, 60, 73, 95, 115, 131, 157, 181, 205, 236, 270, 297, 333, 379, 403, 443, 487, 519, 578, 632, 672, 720, 778, 826, 886, 949, 989, 1059, 1131, 1186, 1260, 1332, 1388, 1482, 1564, 1612, 1696, 1776, 1858, 1946, 2038, 2102, 2187, 2308, 2380, 2490
Offset: 1

Views

Author

Seiichi Manyama, Dec 18 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(k + 1) * Floor[n/(2*k - 1)]^2, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Dec 18 2021 *)
  • PARI
    a(n) = sum(k=1, n, (-1)^(k+1)*(n\(2*k-1))^2);
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, kronecker(-4, k/d)*(2*d-1)));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (2*k-1)*x^k/(1+x^(2*k)))/(1-x))

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} A101455(k/d) * (2*d - 1) = Sum_{k=1..n} 2 * A050469(k) - A002654(k) = 2 * A350166(n) - A014200(n).
G.f.: (1/(1 - x)) * Sum_{k>=1} (2*k - 1) * x^k/(1 + x^(2*k)).
Previous Showing 11-20 of 23 results. Next