cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A065788 a(1) = 64; for n > 1 a(n) is the smallest square > a(n-1) with a(n-1) forming its final digits.

Original entry on oeis.org

64, 1764, 6041764, 96126041764, 8584885596126041764, 1094573934406914368584885596126041764, 164840278246153785356947805564195221094573934406914368584885596126041764
Offset: 1

Views

Author

Klaus Brockhaus, Nov 19 2001

Keywords

Comments

a(n) = A050636(n+1) for n >= 1.

Crossrefs

Programs

  • Mathematica
    nxt[n_]:=Module[{k=1},While[!IntegerQ[Sqrt[k*10^IntegerLength[n]+n]],k++];k*10^IntegerLength[n]+n]; NestList[nxt,64,6] (* Harvey P. Dale, Dec 14 2019 *)

A065791 a(1) = 81; for n > 1, a(n) is the smallest square > a(n-1) with a(n-1) forming its final digits.

Original entry on oeis.org

81, 1681, 1461681, 220861461681, 31071113326220861461681, 36510705834446371569631071113326220861461681, 268496773864458678522722709023395604054900436510705834446371569631071113326220861461681
Offset: 1

Views

Author

Klaus Brockhaus, Nov 19 2001

Keywords

Comments

a(n) = A050634(n+1) for n >= 1.

Crossrefs

A065807 Squares with a smaller square as final digits.

Original entry on oeis.org

49, 64, 81, 100, 121, 144, 169, 225, 289, 324, 361, 400, 441, 484, 529, 625, 729, 784, 841, 900, 961, 1024, 1089, 1225, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364
Offset: 1

Views

Author

Klaus Brockhaus, Nov 22 2001

Keywords

Crossrefs

A065808 gives the corresponding square roots.
Cf. A038678.

Programs

  • Mathematica
    ds[n_] := NestWhileList[FromDigits[Rest[IntegerDigits[#]]] &, n, # > 9 &]; Select[Range[4, 58]^2, Or @@ IntegerQ /@ Sqrt[Rest[ds[#]]] &] (* Jayanta Basu, Jul 10 2013 *)
  • PARI
    a065807(m) = local(a, b, d, j, k, n); for(k=1, m, a=length(Str(n))-1; b=1; j=1; n=k^2; while(b, d=divrem(n, 10^j); if(d[1]>0&&issquare(d[2]), b=0; print1(n, ", "), if(j
    				
  • PARI
    isokend(n) = my(p=10); for(k=1, #Str(n)-1, if (issquare(n % p), return (1)); p*=10);
    isok(n) = issquare(n) && isokend(n); \\ Michel Marcus, Mar 17 2020

Extensions

Changed offset from 0 to 1 by Vincenzo Librandi, Sep 24 2013
Previous Showing 11-13 of 13 results.