A260229
a(n) = floor(e^(n!)).
Original entry on oeis.org
2, 7, 403, 26489122129, 13041808783936322797338790280986488113446079415755132
Offset: 1
a(1) = floor(e^(1!)) = floor(e) = 2.
-
Table[Floor[E^n!], {n, 1, 7}]
-
default(realprecision, 100); vector(5, n, floor(exp(n!))) \\ Michel Marcus, Aug 06 2015
A261071
a(n) = 2^(n!) + 1.
Original entry on oeis.org
3, 5, 65, 16777217, 1329227995784915872903807060280344577
Offset: 1
A291042
One powerful arithmetic progression with nontrivial difference and maximal length.
Original entry on oeis.org
10529630094750052867957659797284314695762718513641400204044879414141178131103515625, 94766670852750475811618938175558832261864466622772601836403914727270603179931640625, 179003711610750898755280216553833349827966214731903803468762950040400028228759765625, 263240752368751321698941494932107867394067962841035005101121985353529453277587890625, 347477793126751744642602773310382384960169710950166206733481020666658878326416015625
Offset: 1
a(1) is obviously a first power.
a(2) = 307841957589849138828884412917083740234375^2 is a square.
a(3) = 5635779747116948576103515625^3 is a third power.
a(4) = 716288998461106640625^4 is a fourth power.
a(5) = 51072299355515625^5 is a fifth power.
Comments