cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A051115 Number of monotone Boolean functions of n variables with 7 mincuts.

Original entry on oeis.org

0, 0, 0, 0, 0, 490, 1308270, 1085660748, 483349680164, 147791677696350, 35419166732721930, 7189973830216081696, 1298090729995668204288, 215276329320562758744210, 33531967207612008887673350
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic

Keywords

References

  • J. L. Arocha, Antichains in ordered sets, (in Spanish) An. Inst. Mat. UNAM, vol. 27, 1987, 1-21.
  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, Belgrade, 1999, in preparation.

Crossrefs

A051116 Number of monotone Boolean functions of n variables with 8 mincuts.

Original entry on oeis.org

0, 0, 0, 0, 0, 115, 1613250, 4693213105, 5971431466764, 4657267944250425, 2654563364004395160, 1223795727111874798255, 485987045749653063943998, 173253367143529540187635315, 57037488183550191520963561230
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, and Zoran Maksimovic

Keywords

References

  • J. L. Arocha, Antichains in ordered sets, (in Spanish) An. Inst. Mat. UNAM, vol. 27, 1987, 1-21.
  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, Belgrade, 1999, in preparation.

Crossrefs

A051117 Number of monotone Boolean functions of n variables with 9 mincuts.

Original entry on oeis.org

0, 0, 0, 0, 0, 20, 1484230, 15946757960, 60089234465176, 122281201867047920, 168329227672583040430, 178185327268349957044060, 156921594738520322214197672, 121014019160263331691800711500
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, and Zoran Maksimovic

Keywords

References

  • J. L. Arocha, Antichains in ordered sets, (in Spanish) An. Inst. Mat. UNAM, vol. 27, 1987, 1-21.
  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, Belgrade, 1999, in preparation.

Crossrefs

A059119 Triangle a(n,m)=number of m-element antichains on a labeled n-set; number of monotone n-variable Boolean functions with m mincuts (lower units), m=0..binomial(n,floor(n,2)).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 1, 8, 9, 2, 1, 16, 55, 64, 25, 6, 1, 1, 32, 285, 1090, 2020, 2146, 1380, 490, 115, 20, 2, 1, 64, 1351, 14000, 82115, 304752, 759457, 1308270, 1613250, 1484230, 1067771, 635044, 326990, 147440, 57675, 19238, 5325, 1170, 190, 20, 1, 1
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jan 06 2001

Keywords

Comments

Row sums give A000372.

Examples

			[1, 1],
[1, 2],
[1, 4, 1],
[1, 8, 9, 2],
[1, 16, 55, 64, 25, 6, 1],
[1, 32, 285, 1090, 2020, 2146, 1380, 490, 115, 20, 2], ...
		

References

  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Formula

a(n, 0) = 1; a(n, 1) = 2^n; a(n, 2) = A016269(n); a(n, 3) = A047707(n); a(n, 4) = A051112(n); a(5, n) = A051113(n); a(6, n) = A051114(n); a(7, n) = A051115(n); a(8, n) = A051116(n); a(9, n) = A051117(n); a(10, n) = A051118(n).

A051303 Number of 3-element proper antichains of an n-element set.

Original entry on oeis.org

0, 0, 0, 1, 30, 605, 9030, 110901, 1200150, 11932285, 111885510, 1006471301, 8786447670, 75039565965, 630534185190, 5234341175701, 43059373189590, 351805681631645, 2859550165976070, 23152657123816101, 186907026783617910, 1505512392025329325
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic

Keywords

Crossrefs

Programs

  • Magma
    [(8^n - 9*6^n + 15*5^n - 4*4^n - 9*3^n + 8*2^n - 2) / Factorial(3) : n in [0..25]]; // G. C. Greubel, Oct 06 2017
  • Maple
    A051303:=n->(8^n -9*6^n +15*5^n -4*4^n -9*3^n +8*2^n -2)/3!: seq(A051303(n), n=0..30); # Wesley Ivan Hurt, Oct 06 2017
  • Mathematica
    Table[(8^n -9*6^n +15*5^n -4*4^n -9*3^n +8*2^n -2)/3!, {n,0,25}] (* G. C. Greubel, Oct 06 2017 *)
  • PARI
    for(n=0,25, print1((8^n -9*6^n +15*5^n -4*4^n -9*3^n +8*2^n -2 )/3!, ", ")) \\ G. C. Greubel, Oct 06 2017
    

Formula

a(n) = (8^n -9*6^n +15*5^n -4*4^n -9*3^n +8*2^n -2)/3!.
G.f.: x^3*(360*x^3-78*x^2-x-1) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(8*x-1)). - Colin Barker, Nov 27 2012
a(n) = 29*a(n-1) - 343*a(n-2) + 2135*a(n-3) - 7504*a(n-4) + 14756*a(n-5) - 14832*a(n-6) + 5760*a(n-7) for n > 6. - Wesley Ivan Hurt, Oct 06 2017
E.g.f.: exp(x)*(exp(x) - 1)^3*(2 - 2*exp(x) - 3*exp(2*x) + 3*exp(3*x) + exp(4*x))/6. - Stefano Spezia, Sep 28 2024

A056069 Number of 4-element ordered antichains on an unlabeled n-element set; T_1-hypergraphs with 4 labeled nodes and n hyperedges.

Original entry on oeis.org

25, 454, 3818, 21420, 92805, 335152, 1055944, 2990020, 7767357, 18789070, 42797602, 92588216, 191542842, 381000192, 731941256, 1363109096, 2468549141, 4358716470, 7520830306, 12706161124, 21054530855, 34269633840, 54863015040, 86489873580, 134406530985
Offset: 4

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 26 2000

Keywords

Comments

T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes has a hyperedge containing one but not the other node.

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Cf. A051112 for 4-element (unordered) antichains on a labeled n-element set, A056005.

Formula

a(n) = C(n + 15, 15) - 12*C(n + 11, 11) + 24*C(n + 9, 9) + 4*C(n + 8, 8) - 18*C(n + 7, 7) + 6*C(n + 6, 6) - 36*C(n + 5, 5) + 36*C(n + 4, 4) + 11*C(n + 3, 3) - 22*C(n + 2, 2) + 6*C(n + 1, 1).
Empirical G.f.: x^4*(6*x^10 -62*x^9 +271*x^8 -636*x^7 +800*x^6 -328*x^5 -495*x^4 +812*x^3 -446*x^2 +54*x +25)/(x-1)^16. [Colin Barker, May 29 2012]

A056090 Number of 4-element ordered antichain covers of an unlabeled n-element set.

Original entry on oeis.org

25, 429, 3364, 17602, 71385, 242347, 720792, 1934076, 4777337, 11021713, 24008532, 49790614, 98954626, 189457350, 350941064, 631167840, 1105440045, 1890167329, 3162113836, 5185330818, 8348369731, 13215102985, 20593381200, 31626858540, 47916657405, 71681161365
Offset: 4

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 27 2000

Keywords

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Cf. A056047 for 4-antichain (unordered) covers of a labeled n-set, A051112. See also A056074, A056093.

Programs

  • Magma
    [(-104270181120*n + 236073062016*n^2 - 169534943760*n^3 + 28403538800*n^4 + 12862329480*n^5 - 2983956976*n^6 - 613678065*n^7 + 39763295*n^8 + 21456435*n^9 + 2461459*n^10 + 143325*n^11 + 5005*n^12 + 105*n^13 + n^14)/Factorial(14): n in [4..50]]; // G. C. Greubel, Oct 06 2017
  • Mathematica
    Table[(-104270181120 n + 236073062016 n^2 - 169534943760 n^3 + 28403538800 n^4 + 12862329480 n^5 - 2983956976 n^6 - 613678065 n^7 + 39763295 n^8 + 21456435 n^9 + 2461459 n^10 + 143325 n^11 + 5005 n^12 + 105 n^13 + n^14)/(14)!, {n, 4, 50}] (* G. C. Greubel, Oct 06 2017 *)
    LinearRecurrence[{15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1},{25,429,3364,17602,71385,242347,720792,1934076,4777337,11021713,24008532,49790614,98954626,189457350,350941064},30] (* Harvey P. Dale, Dec 09 2021 *)
  • PARI
    for(n=4,50, print1((-104270181120*n + 236073062016*n^2 - 169534943760*n^3 + 28403538800*n^4 + 12862329480*n^5 - 2983956976*n^6 - 613678065*n^7 + 39763295*n^8 + 21456435*n^9 + 2461459*n^10 + 143325*n^11 + 5005*n^12 + 105*n^13 + n^14)/(14)!, ", ")) \\ G. C. Greubel, Oct 06 2017
    

Formula

a(n) = C(n + 14, 14) - 12*C(n + 10, 10) + 24*C(n + 8, 8) + 4*C(n + 7, 7) - 18*C(n + 6, 6) + 6*C(n + 5, 5) - 36*C(n + 4, 4) + 36*C(n + 3, 3) + 11*C(n + 2, 2) - 22*C(n + 1, 1) + 6*C(n, 0).
G.f.: x^4*(6*x^10 -62*x^9 +271*x^8 -636*x^7 +800*x^6 -328*x^5 -495*x^4 +812*x^3 -446*x^2 +54*x +25)/(1-x)^15. - Colin Barker, May 29 2012
a(n) = (-104270181120 n + 236073062016 n^2 - 169534943760 n^3 + 28403538800 n^4 + 12862329480 n^5 - 2983956976 n^6 - 613678065 n^7 + 39763295 n^8 + 21456435 n^9 + 2461459 n^10 + 143325 n^11 + 5005 n^12 + 105 n^13 + n^14)/(14)!. - G. C. Greubel, Oct 06 2017

A056104 Number of 9-antichain covers of a labeled n-set.

Original entry on oeis.org

20, 1484110, 15936368770, 59961701958816, 121740972715475096, 167109117756164222210, 176340421320592288902670, 154794453668193645059165412, 118987888829384136293188343172
Offset: 6

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic, Jul 29 2000

Keywords

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

A094036 Number of connected 5-element antichains on a labeled n-set.

Original entry on oeis.org

0, 0, 0, 0, 6, 2005, 280971, 22795136, 1345702092, 65250058251, 2781911443317, 108660434574142, 3991349973006198, 140293749275697017, 4775521611056597583, 158758002632650598268, 5185922974307536588224
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 22 2004

Keywords

Crossrefs

Formula

E.g.f.: (exp(31*x)-20*exp(23*x)+60*exp(19*x)+20*exp(17*x)
+5*exp(16*x)-105*exp(15*x)-120*exp(14*x)+150*exp(13*x)+180*exp(12*x)
-300*exp(11*x)-110*exp(10*x)+380*exp(9*x)+160*exp(8*x)-575*exp(7*x)
+570*exp(6*x)-186*exp(5*x)-975*exp(4*x)+1645*exp(3*x)-1030*exp(2*x)
+274*exp(x)-24)/5!.

A051304 Number of 4-element proper antichains of an n-element set.

Original entry on oeis.org

0, 0, 0, 0, 5, 780, 41545, 1442910, 39400305, 923889960, 19550316665, 384954289170, 7196416532305, 129495073447740, 2264887575116985, 38775513868485030, 653195404307491505, 10869004241198535120, 179171681947204584505, 2932562923651659410490, 47737465871974206925905
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic

Keywords

Crossrefs

Programs

  • Magma
    [(16^n - 18*12^n + 60*10^n - 9*9^n - 102*8^n + 105*7^n - 90*6^n + 95*5^n - 31*4^n - 33*3^n + 28*2^n - 6)/(24): n in [0..50]]; // G. C. Greubel, Oct 07 2017
  • Mathematica
    Table[(16^n - 18*12^n + 60*10^n - 9*9^n - 102*8^n + 105*7^n - 90*6^n + 95*5^n - 31*4^n - 33*3^n + 28*2^n - 6)/4!, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    for(n=0,50, print1((16^n - 18*12^n + 60*10^n - 9*9^n - 102*8^n + 105*7^n - 90*6^n + 95*5^n - 31*4^n - 33*3^n + 28*2^n - 6)/4!, ", ")) \\ G. C. Greubel, Oct 07 2017
    

Formula

a(n) = (1/4!) * (16^n -18*12^n +60*10^n -9*9^n -102*8^n +105*7^n -90*6^n +95*5^n -31*4^n -33*3^n +28*2^n -6).
G.f. x^4*( 5 +365*x -7935*x^2 +46885*x^3 -191420*x^4 +2285460*x^5 -14380560*x^6 +27216000*x^7 ) / ( (x-1) *(9*x-1) *(6*x-1) *(7*x-1) *(3*x-1) *(5*x-1) *(2*x-1) *(12*x-1) *(10*x-1) *(4*x-1) *(8*x-1) *(16*x-1) ). - R. J. Mathar, Jun 13 2013

Extensions

Terms a(16) onward added by G. C. Greubel, Oct 07 2017
Previous Showing 11-20 of 43 results. Next