cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A143043 10^n-th number divisible by exactly 5 distinct primes.

Original entry on oeis.org

6006, 17490, 67860, 331674, 1980902, 13757850, 106254070, 882141222, 7687451167, 69242679948
Offset: 1

Views

Author

Lekraj Beedassy, Jul 18 2008

Keywords

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 455, pp 94, Ellipses, Paris 2008.

Crossrefs

Cf. A051270.

Formula

a(n)=A051270(10^n).

Extensions

a(8)-a(10) from Donovan Johnson, Mar 30 2010

A179938 Third largest prime factor of numbers that are divisible by at least three different primes (A000977).

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 2, 5, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 5, 3, 3, 3, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 2, 3, 3, 3, 2, 2, 2, 2, 3, 5, 2, 2, 3, 2, 3
Offset: 1

Views

Author

Jonathan Vos Post, Jan 12 2011

Keywords

Comments

Third largest prime factor of numbers k such that omega(k) = A001221(k) > 2. The 3rd largest prime factor may equal the second largest. This is not identical to third largest distinct prime factor of numbers that are divisible by at least three different primes. Indices n where a(n) equals 2, 3, 5, 7, 11, 13, 17, 19, 23, ... for the first time are 1, 8, 72, 299, 905, 1718, 3302, 6020, 10330, ... the corresponding numbers from A000977 are 30, 90, 350, 1001, 2431, 4199, 7429, 12673, 20677, ...

Examples

			a(1) = 2 because 30 = 2 * 3 * 5 has third largest prime factor 2.
a(2) = 2 because 42 = 2 * 3 * 7 has third largest prime factor 2.
a(3) = 2 because 60 = 2 * 2 * 3 * 5 has both third and fourth largest prime factor 2.
a(8) = 3 because 90 = 2 * 3 * 3 * 5 has both second and third largest prime factor 3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; local k;
          if n=1 then 30
          else for k from b(n-1)+1 while
                  nops(ifactors(k)[2])<3 do od;
               k
          fi
        end:
    a:= n-> sort(map(x-> x[1]$x[2], ifactors(b(n))[2]))[-3]:
    seq(a(n), n=1..120);
  • Mathematica
    b[n_] := b[n] = Module[{k}, If[n==1, 30, For[k = b[n-1]+1, PrimeNu[k] < 3, k++]; k]];
    a[n_] := (Table[#[[1]], {#[[2]]}]& /@ FactorInteger[b[n]] // Flatten // Sort)[[-3]];
    Array[a, 120] (* Jean-François Alcover, Nov 28 2020, after Alois P. Heinz *)

Extensions

Edited by Alois P. Heinz, Jan 14 2011

A324208 Numbers with exactly eight distinct exponents in their prime factorization, or eight distinct parts in their prime signature.

Original entry on oeis.org

25968760179275365452000000, 29023908435660702564000000, 30690352939143613716000000, 31435867585438600284000000, 33959147926744708668000000, 34300982696689921212000000, 36356264250985511632800000, 37151479873700163972000000, 38953140268913048178000000, 39267640824717421116000000
Offset: 1

Views

Author

David A. Corneth, Feb 17 2019

Keywords

Examples

			29023908435660702564000000 = 2^8 * 3^7 * 5^6 * 7^5 * 11^4 * 13^3 * 17 * 19^2 is in the sequence as there are exactly 8 distinct exponents; 1 through 8.
		

Crossrefs

Programs

  • PARI
    is(n) = #Set(factor(n)[, 2]) == 8

A348882 Numbers that are expressible as the product of the number of distinct prime factors of preceding integers.

Original entry on oeis.org

16, 48, 72, 96, 144, 432, 576, 1296, 2592, 5184, 20736, 32805, 221184, 1555200, 11197440, 55987200, 95551488, 268738560, 302330880, 382205952, 524880000, 671846400, 6718464000, 34012224000, 155520000000, 403107840000, 6856864358400, 107495424000000, 110075314176000
Offset: 1

Views

Author

Metin Sariyar, Nov 02 2021

Keywords

Examples

			The number of distinct prime factors of the numbers 15, 14, 13, 12, 11, 10 are respectively 2, 2, 1, 2, 1, 2 and 2*2*1*2*1*2 = 16, hence 16 is a term.
		

Crossrefs

Programs

  • Mathematica
    om[n_] := om[n] = PrimeNu[n]; q[n_] := Module[{m = n, k = n - 1}, While[k > 1 && Divisible[m, om[k]], m /= om[k]; k--]; m == 1]; Select[Range[2, 10^6], q] (* Amiram Eldar, Nov 02 2021 *)

Extensions

a(13)-a(17) from Amiram Eldar, Nov 02 2021
More terms from David A. Corneth, Nov 02 2021

A368832 Integers not of one of the 5 forms p^k, p*q^k, 2*p*q^k, p*q*r or 2*p*q*r with p, q, r distinct primes and k>=0.

Original entry on oeis.org

36, 60, 72, 84, 100, 108, 120, 132, 140, 144, 156, 168, 180, 196, 200, 204, 216, 220, 225, 228, 240, 252, 260, 264, 276, 280, 288, 300, 308, 312, 315, 324, 336, 340, 348, 360, 364, 372, 380, 392, 396, 400, 408, 420, 432, 440, 441, 444, 450, 456, 460, 468, 476, 480, 484, 492, 495, 500, 504, 516, 520, 525, 528, 532, 540, 552
Offset: 1

Views

Author

R. J. Mathar, Jan 07 2024

Keywords

Comments

Cyclic groups of these orders cannot be Schur groups, see the Theorem by [Evdokimov et al.].

Crossrefs

Cf. A051270 (subsequence), A036785 (subsequence), A074969 (subsequence).

Programs

  • Maple
    isA007304 := proc(n)
        if bigomega(n) = 3 and A001221(n) =3 then
            true;
        else
            false ;
        end if;
    end proc:
    # list of prime exponents
    pexp := proc(n)
        local e,pe ;
        e := [] ;
        for pe in ifactors(n)[2] do
            e := [op(e),op(2,pe)] ;
        end do:
        e ;
    end proc:
    isCycSchGr := proc(n)
        local om,nhalf ,pe;
        om := A001221(n) ;
        if  om > 4 then
            return false;
        elif om = 4 then
            # require 2*p*q*r
            if type(n,'even') and type(n/2,'odd') then
                nhalf := n/2 ;
                # require nhalf =p*q*r in A007304
                return isA007304(nhalf) ;
            else
                false;
            end if;
        elif om = 3 then
            # require p*q*r or 2*p*q^k
            if type(n,'even') and type(n/2,'odd') then
                nhalf := n/2 ;
                # require nhalf =p*q^k
                pe := pexp(nhalf) ;
                if nops(pe) =2 and 1 in convert(pe,set) then
                    true;
                else
                    false ;
                end if;
            elif type(n,'odd') then
                # require n =p*q*r
                if isA007304(n) then
                    true;
                else
                    false ;
                end if;
            else
                false;
            end if;
        elif om = 2 then
            # require p*q^k
            pe := pexp(n) ;
            if 1 in convert(pe,set) then
                true;
            else
                false;
            end if;
        else
            # p^k, k>=0
            true ;
        end if;
    end proc:
    for n from 1 to 3000 do
        if not isCycSchGr(n) then
            printf("%d,",n) ;
        end if;
    end do:
Previous Showing 21-25 of 25 results.