cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 67 results. Next

A244410 Number of unlabeled rooted trees with 2n+1 nodes and maximal outdegree (branching factor) n.

Original entry on oeis.org

1, 1, 5, 16, 49, 142, 415, 1198, 3473, 10048, 29118, 84376, 244747, 710198, 2062273, 5991417, 17416400, 50652247, 147384675, 429043389, 1249508946, 3640449678, 10610613551, 30937605075, 90237313082, 263288153073, 768449666116, 2243530461066, 6552016136666
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 27 2014

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> `if`(n=0, 1, b(2*n$2, n$2)-b(2*n$2, n-1$2)):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]* b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]] // FullSimplify] ; a[n_] := If[n == 0, 1, b[2*n, 2 n, n, n] - b[2*n, 2 n, n - 1, n - 1]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 06 2015, after Maple *)

Formula

a(n) = A244372(2n+1,n).
a(n) ~ c * d^n / sqrt(n), where d = 2.955765285651994974714817524... is the Otter's rooted tree constant (see A051491), and c = 2.806733... . - Vaclav Kotesovec, Jul 11 2014

A339984 G.f.: g(x) * g(x^2), where g(x) is the g.f. of A000081.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 5, 13, 26, 65, 147, 369, 899, 2298, 5851, 15261, 39945, 105948, 282504, 759480, 2052027, 5576017, 15216998, 41705762, 114715503, 316611401, 876466003, 2433091773, 6771462322, 18889829555, 52809592990, 147935027381, 415182991401, 1167251435240
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 25 2020

Keywords

Crossrefs

Programs

  • Mathematica
    max = 30; A000081 = Rest[Cases[ Import["https://oeis.org/A000081/b000081.txt", "Table"], {, }][[All, 2]]]; g81 = Sum[A000081[[k]]*x^k, {k, 1, max}]; g81x2 = Sum[A000081[[k]]*x^(2*k), {k, 1, max}]; CoefficientList[Series[g81 * g81x2, {x, 0, max}], x]

Formula

a(n) ~ A339986 * A051491^n / n^(3/2).

A339985 G.f.: g(x)^2 * g(x^2), where g(x) is the g.f. of A000081.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 6, 14, 37, 90, 232, 584, 1512, 3906, 10246, 26984, 71766, 191852, 516400, 1396760, 3797435, 10367628, 28420466, 78183462, 215791426, 597368222, 1658233794, 4614679792, 12872125836, 35982713314, 100787606966, 282832173830, 795070060983
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 25 2020

Keywords

Crossrefs

Programs

  • Mathematica
    max = 30; A000081 = Rest[Cases[ Import["https://oeis.org/A000081/b000081.txt", "Table"], {, }][[All, 2]]]; g81 = Sum[A000081[[k]]*x^k, {k, 1, max}]; g81x2 = Sum[A000081[[k]]*x^(2*k), {k, 1, max}]; CoefficientList[Series[g81^2 * g81x2, {x, 0, max}], x]

Formula

a(n) ~ 2 * A339986 * A051491^n / n^(3/2).

A340310 Decimal expansion of a constant related to the asymptotics of A000107.

Original entry on oeis.org

3, 6, 1, 7, 7, 8, 2, 5, 8, 3, 9, 0, 0, 2, 1, 2, 1, 9, 7, 9, 2, 6, 8, 8, 6, 2, 4, 7, 3, 1, 1, 9, 2, 4, 5, 5, 2, 7, 1, 9, 3, 1, 2, 2, 1, 8, 1, 0, 1, 6, 8, 2, 1, 4, 1, 7, 8, 4, 2, 1, 0, 9, 8, 7, 8, 3, 4, 2, 7, 8, 1, 0, 5, 6, 6, 7, 2, 5, 5, 9, 2, 4, 0, 9, 2, 4, 2, 8, 0, 6, 2, 8, 3, 1, 1, 6, 8, 7, 4, 3, 8, 4, 9, 6, 9, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2021

Keywords

Examples

			0.36177825839002121979268862473119245527193122181016821417842109878342781...
		

Crossrefs

Cf. A000107.

Formula

Equals lim_{n->infinity} A000107(n) * sqrt(n) / A051491^n.

A346915 Decimal expansion of the limit as N->oo of the mean number of mems per forest taken by Knuth's algorithm O when generating the rooted forests of N vertices.

Original entry on oeis.org

3, 5, 3, 3, 9, 2, 6, 3, 9, 8, 0, 2, 3, 7, 2, 1, 7, 9, 6, 9, 1, 5, 9, 9, 9, 7, 5, 6, 9, 0, 0, 2, 7, 2, 7, 8, 4, 5, 1, 0, 8, 6, 7, 6, 0, 3, 2, 5, 7, 3, 7, 7, 2, 9, 1, 8, 0, 6, 7, 3, 4, 5, 8, 9, 4, 6, 0, 3, 4, 1, 2, 0, 6, 2, 1, 8, 6, 9, 2, 4, 9, 4, 1, 9, 7, 5, 0, 7, 7, 2, 5, 1, 2, 6, 3, 1, 2, 7, 2, 8, 7, 3, 0, 5, 5
Offset: 1

Views

Author

Kevin Ryde, Aug 07 2021

Keywords

Comments

Knuth volume 4A section 7.2.1.6 algorithm O adapts the rooted tree iteration algorithm of Beyer and Hedetniemi (A346913) to become a forests iteration in vertex parent array form (A346914).
Knuth's exercise 88 is to count mems (memory reads + memory writes) in algorithm O. Per Knuth's answer, the present constant is 2 + 3/(d-1) where d=A051491 is the growth power of rooted trees (and forests).
Also equals 3*S+2 where S=A346916 is the (limit) mean number of singletons in a rooted forest. The mems are S reads to find the end-most vertex k which is not a singleton, then S+1 reads and S+1 writes to change k and the singletons to subtree copies. Finding k examines S+1 array entries, but the algorithm holds the final p[N] in a register as well as in memory so no mem to examine it.

Examples

			3.533926398023721796915999756900272...
		

Crossrefs

Cf. A051491 (rooted tree growth), A346916 (mean singletons per forest).
Cf. A346913 (levels iteration), A346914 (vpar iteration).

Formula

Equals 2 + 3/(A051491 - 1). [Knuth]
Equals 3*A346916 + 2.

A029855 Number of rooted trees where root has degree 4.

Original entry on oeis.org

1, 1, 3, 7, 19, 46, 124, 320, 858, 2282, 6161, 16647, 45352, 123861, 340000, 936098, 2586518, 7166394, 19911638, 55456892, 154814055, 433081632, 1213901668, 3408659401, 9587879987, 27011564035, 76212078500
Offset: 5

Views

Author

Keywords

Comments

Fourth column of A033185. - Michael Somos, Aug 20 2018

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 53.

Crossrefs

Cf. A000226 (root degree 3), A000081, A033185.

Programs

  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i]s[n-1,i]i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];Drop[Take[CoefficientList[CycleIndex[SymmetricGroup[4],s]/.Table[s[j]->Table[Sum[rt[[i]]x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],4]  (* Geoffrey Critzer, Oct 14 2012, after code by Robert A. Russell in A000081 *)
  • PARI
    max_n = 200; f=vector(max_n);            \\ f[n] = A000081[n], n=1..max_n
    sum2(k) = {local(s); s=0; fordiv(k, d, s += d*f[d]); return(s)};
    Init_f()={f[1]=1;
    for(n =1, max_n -2, s=0; for(k=1, n, s+=sum2(k)*f[n-k+1]); f[n+1]=s/n)};
    S=0; P=[0,1,1,1,1,0];
    visit4() = {i = 3; k = 2; p = P[2]; Pr = 1;
    while(1, while(P[i]==p, i++);c=i-k;Pr*=binomial(f[P[k]]+c-1, c);
    if(P[i] == 0, S += Pr; return); p = P[i]; k = i; i++)};
                                             \\ F. Ruskey partition generator
    Part(n, k, s, t) = { P[t] = s;
    if((k == 1) || (n == k), visit4(), L = max(1, ceil((n - s)/(k - 1)));
    for(j = L, min(s, n-s-k+2), Part(n-s, k-1, j, t+1))); P[t] = 1;};
    \\
    a(n) = {S=0; n--; Part(2*n,4+1,n,1); return(S)}
    Init_f(); for(n=5, max_n, print(n, " ", a(n)))           \\ b-file format
    \\ # Washington Bomfim, Jul 10 2012

Formula

a(n)= Sum_(P){ Prod_(1^a1 2^a2 3^a3 ...){ binomial(f(i)+a_i -1, a_i) } }, where P is the set of the partitions of n with four parts, and f = A000081. - Washington Bomfim, Jul 10 2012
a(n) ~ c * A051491^n / n^(3/2), where c = 0.036592912312268101787903577... - Vaclav Kotesovec, Dec 26 2020

A029870 Number of connected functions on n points with a loop of length 7.

Original entry on oeis.org

1, 1, 5, 21, 80, 285, 970, 3192, 10236, 32197, 99743, 305276, 925342, 2783012, 8316994, 24726109, 73195582, 215911767, 635028054, 1863156727, 5455350409, 15946267328, 46545783253, 135702643984, 395246786050, 1150250414764, 3345193851398, 9723141517918
Offset: 7

Views

Author

Keywords

Crossrefs

Column 7 of A339428.

Formula

"CIK[ 7 ]" (necklace, indistinct, unlabeled, 7 parts) transform of A000081.
a(n) ~ A187770 * A051491^n / n^(3/2). - Vaclav Kotesovec, Dec 25 2020

Extensions

Terms a(32) and beyond from Andrew Howroyd, Dec 04 2020

A029871 Number of connected functions on n points with a loop of length 8.

Original entry on oeis.org

1, 1, 6, 25, 104, 384, 1380, 4729, 15806, 51478, 164788, 519296, 1617066, 4983855, 15233671, 46235252, 139506803, 418838281, 1252174861, 3730058316, 11077154790, 32808815240, 96953599162, 285945645659, 841909040785, 2475184643011, 7267678432397, 21315839832323
Offset: 8

Views

Author

Keywords

Crossrefs

Column 8 of A339428.

Formula

"CIK[ 8 ]" (necklace, indistinct, unlabeled, 8 parts) transform of A000081.
a(n) ~ A187770 * A051491^n / n^(3/2). - Vaclav Kotesovec, Dec 25 2020

Extensions

Terms a(32) and beyond from Andrew Howroyd, Dec 04 2020

A032205 Number of connected functions on n points with a loop of length 9.

Original entry on oeis.org

1, 1, 6, 30, 127, 506, 1902, 6823, 23673, 79936, 264036, 856772, 2739525, 8652707, 27049259, 83824636, 257847515, 788121922, 2395786374, 7248517868, 21840785100, 65574504200, 196266067194, 585822825763, 1744384025528, 5183186173513, 15372268502463, 45515472900289
Offset: 9

Views

Author

Keywords

Crossrefs

Column 9 of A339428.

Formula

"CIK[ 9 ]" (necklace, indistinct, unlabeled, 9 parts) transform of A000081.
a(n) ~ A187770 * A051491^n / n^(3/2). - Vaclav Kotesovec, Dec 25 2020

Extensions

Terms a(33) and beyond from Andrew Howroyd, Dec 04 2020

A032206 Number of connected functions on n points with a loop of length 10.

Original entry on oeis.org

1, 1, 7, 34, 158, 655, 2578, 9619, 34659, 120966, 412214, 1375861, 4516058, 14611989, 46712942, 147798787, 463512254, 1442513910, 4459548539, 13706894100, 41915906463, 127607366453, 386953440455, 1169295277193, 3522431890950, 10581852932516, 31711045921908
Offset: 10

Views

Author

Keywords

Crossrefs

Column 10 of A339428.

Formula

"CIK[ 10 ]" (necklace, indistinct, unlabeled, 10 parts) transform of A000081.
a(n) ~ A187770 * A051491^n / n^(3/2). - Vaclav Kotesovec, Dec 25 2020

Extensions

Terms a(34) and beyond from Andrew Howroyd, Dec 04 2020
Previous Showing 41-50 of 67 results. Next