cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A175102 1, followed by list of numbers n such that the number of strong primes and the number of weak primes are equal at the n-th prime.

Original entry on oeis.org

1, 60, 64, 41192, 41194, 41247, 41250, 41252, 41257, 41259, 41261, 41263, 41265, 41267, 41273, 41275, 41277, 41279, 41287, 41317, 41319, 41321, 41323, 41325, 41327, 41328, 41329, 41335, 41336, 41338, 41339, 41341, 41389, 41393, 41397, 41399, 41401, 41404, 41406, 41408, 41412, 41444, 41448, 42112
Offset: 1

Views

Author

G. L. Honaker, Jr., Dec 02 2010

Keywords

Comments

Also, indices of zeros in A092243. - N. J. A. Sloane, Mar 13 2016

Crossrefs

Programs

  • PARI
    my(c=1, q=3, r=2, s=0); print1(c, ", "); forprime(p=5, default(primelimit), c++;(s+=sign(r+0-2*(r=q)+q=p))||print1(c, ", ")) \\ M. F. Hasler, Dec 03 2010

Extensions

More terms from Chris K. Caldwell

A363782 Products of three distinct strong primes.

Original entry on oeis.org

5423, 6919, 7667, 11033, 11803, 12529, 13079, 13277, 14773, 16687, 18139, 18241, 18821, 18887, 20009, 20213, 21373, 22649, 23749, 24013, 25201, 25619, 25789, 26609, 27269, 27863, 28897, 29087, 30217, 30481, 30943, 32021, 32153, 32219, 33031, 33473, 34133, 35003, 35629, 35717, 36839
Offset: 1

Views

Author

Massimo Kofler, Jun 21 2023

Keywords

Comments

Strong primes: prime(n) > (prime(n-1) + prime(n+1))/2.

Examples

			5423 = 11*17*29 and 11 > (7+13)/2, 17 > (13+19)/2, 29 > (23+31)/2.
6919 = 11*17*37 and 11 > (7+13)/2, 17 > (13+19)/2, 37 > (31+41)/2.
		

Crossrefs

Programs

  • Mathematica
    strongQ[p_] := p > 2 && 2*p > Total[NextPrime[p, {-1, 1}]]; Select[Range[1, 37000, 2], (f = FactorInteger[#])[[;; , 2]] == {1, 1, 1} && AllTrue[f[[;; , 1]], strongQ] &] (* Amiram Eldar, Jun 21 2023 *)
    Module[{nn=50,strgpr},strgpr=Select[Partition[Prime[Range[nn]],3,1],#[[2]]>(#[[1]]+#[[3]])/2&][[;;,2]];Take[Union[Times@@@Subsets[strgpr,{3}]],nn]] (* Harvey P. Dale, Aug 21 2024 *)

Extensions

Definition clarified by N. J. A. Sloane, Oct 08 2023

A054811 Fourth term of strong prime quintets: p(m-2)-p(m-3) > p(m-1)-p(m-2) > p(m)-p(m-1) > p(m+1)-p(m).

Original entry on oeis.org

1667, 1787, 1867, 1871, 1997, 2381, 2473, 2531, 2539, 3457, 3461, 4217, 4517, 5279, 5417, 5441, 6043, 6659, 7243, 7307, 7757, 7877, 7933, 8167, 8521, 9613, 9619, 11057, 11393, 11593, 11831, 12409, 13877, 14827, 15137, 15551, 16061, 16333
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Comments

First member of pairs of consecutive primes in A054807 (4th of strong prime quartets). - M. F. Hasler, Oct 27 2018

Crossrefs

Cf. A051634, A051635; A054800 .. A054803: members of balanced prime quartets (= 4 consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartets, quintets, sextets; A054819 .. A054840: members of weak prime quartets, quintets, sextets, septets.

Formula

a(n) = nextprime(A054810(n)) = prevprime(A054812(n)), nextprime = A151800, prevprime = A151799; A054811 = {m = A054807(n) | nextprime(m) = A054807(n+1)}. - M. F. Hasler, Oct 27 2018

A054812 Fifth term of strong prime quintets: p(m-3)-p(m-4) > p(m-2)-p(m-3) > p(m-1)-p(m-2) > p(m)-p(m-1).

Original entry on oeis.org

1669, 1789, 1871, 1873, 1999, 2383, 2477, 2539, 2543, 3461, 3463, 4219, 4519, 5281, 5419, 5443, 6047, 6661, 7247, 7309, 7759, 7879, 7937, 8171, 8527, 9619, 9623, 11059, 11399, 11597, 11833, 12413, 13879, 14831, 15139, 15559, 16063, 16339
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Comments

Second member of pairs of consecutive primes in A054807 (4th term of strong prime quartets). - M. F. Hasler, Oct 27 2018

Crossrefs

Cf. A051634, A051635; A054800 .. A054803: members of balanced prime quartets (= 4 consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartets, quintets, sextets; A054819 .. A054840: members of weak prime quartets, quintets, sextets, septets.

Programs

  • Mathematica
    spqQ[c_]:=Module[{d=Differences[c]},d[[1]]>d[[2]]>d[[3]]>d[[4]]]; Transpose[ Select[Partition[Prime[Range[2000]],5,1],spqQ]][[5]] (* Harvey P. Dale, Jan 01 2013 *)

Formula

a(n) = nextprime(A054811(n)); A054811 = {m = A054807(n) | prevprime(m) = A054807(n-1)}; nextprime = A151800, prevprime = A151799. - M. F. Hasler, Oct 27 2018

A054813 First term of strong prime sextets: p(m+1)-p(m) > p(m+2)-p(m+1) > p(m+3)-p(m+2) > p(m+4)-p(m+3) > p(m+5)-p(m+4).

Original entry on oeis.org

1831, 2477, 3413, 9551, 21433, 22973, 25189, 26053, 32143, 33359, 33893, 39047, 40771, 41203, 44221, 47251, 48787, 55849, 57751, 66977, 70079, 74231, 74653, 74687, 75083, 75109, 82913, 84263, 87811, 88339, 88609, 103723, 103843, 106219, 106921, 108139, 110881, 112979, 118093
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

Cf. A051634, A051635; A054800 .. A054803: members of balanced prime quartets (= consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartet, quintet, sextet; A054819 .. A054840: members of weak prime quartet, quintet, sextet, septets.

Formula

a(n) = A151799(A054814(n)), A054813 = { m = A054808(n) | m = A151799(A054808(n+1)) }, where A151799 = next smaller prime. - M. F. Hasler, Oct 27 2018

Extensions

More terms and offset corrected to 1 by M. F. Hasler, Oct 27 2018

A054814 Second term p(m) of strong prime sextets: p(m)-p(m-1) > p(m+1)-p(m) > p(m+2)-p(m+1) > p(m+3)-p(m+2) > p(m+4)-p(m+3).

Original entry on oeis.org

1847, 2503, 3433, 9587, 21467, 22993, 25219, 26083, 32159, 33377, 33911, 39079, 40787, 41213, 44249, 47269, 48799, 55871, 57773, 67003, 70099, 74257, 74687, 74699, 75109, 75133, 82939, 84299, 87833, 88379, 88643, 103769, 103867, 106243, 106937, 108161, 110899, 112997, 118127, 120371
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

Cf. A051634, A051635; A054800 .. A054803: members of balanced prime quartets (= consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartet, quintet, sextet; A054819 .. A054840: members of weak prime quartet, quintet, sextet, septets.
Subsequence of A054808.

Programs

  • Mathematica
    Select[Partition[Prime[Range[12000]],6,1],Max[Differences[#,2]]<0&][[;;,2]] (* Harvey P. Dale, Jun 17 2023 *)

Formula

a(n) = A151800(A054813(n)) = A151799(A054815(n)), A151800 = nextprime, A151799 = prevprime; A054814 = { m = A054809(n) | m = nextprime(A054809(n-1)) }. - M. F. Hasler, Oct 27 2018

Extensions

Edited and offset changed to 1 by M. F. Hasler, Oct 26 2018

A054815 Third term of strong prime sextets: p(m-1)-p(m-2) > p(m)-p(m-1) > p(m+1)-p(m) > p(m+2)-p(m+1) > p(m+3)-p(m+2).

Original entry on oeis.org

1861, 2521, 3449, 9601, 21481, 23003, 25229, 26099, 32173, 33391, 33923, 39089, 40801, 41221, 44257, 47279, 48809, 55889, 57781, 67021, 70111, 74279, 74699, 74707, 75133, 75149, 82963, 84307, 87853, 88397, 88651, 103787, 103889
Offset: 0

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Partition[Prime[Range[10000]],6,1],Max[Differences[#,2]]<0&] [[All,3]] (* Harvey P. Dale, Apr 30 2017 *)

A155188 Sophie Germain primes that are also strong primes and lesser of twin prime pairs.

Original entry on oeis.org

11, 29, 41, 179, 191, 239, 281, 419, 431, 641, 659, 809, 1019, 1031, 1049, 1229, 1289, 1451, 1481, 1931, 2129, 2141, 2339, 2549, 2969, 3299, 3329, 3359, 3389, 3539, 3821, 3851, 4019, 4271, 4481, 5231, 5279, 5441, 5501, 5639, 5741, 5849, 6131, 6269, 6449
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p0=Prime[n];p1=Prime[n+1];p2=Prime[n+2];If[p1>(p0+p2)/2,If[PrimeQ[p1*2+1],If[PrimeQ[p1+2],AppendTo[lst,p1]]]],{n,7!}];lst

A363167 Products of four distinct strong primes.

Original entry on oeis.org

200651, 222343, 283679, 319957, 363341, 385033, 408221, 428417, 452353, 463573, 483923, 491249, 513689, 526031, 544357, 546601, 547723, 580261, 605693, 671143, 688721, 696377, 698819, 739211, 740333, 742951, 743699, 747881, 771661, 774367, 783343, 790801, 808027, 820369
Offset: 1

Views

Author

Massimo Kofler, Sep 07 2023

Keywords

Comments

Strong primes: prime(n) > (prime(n-1) + prime(n+1))/2.

Examples

			200651 = 11*17*29*37 and 11 > (7+13)/2, 17 > (13+19)/2, 29 > (23+31)/2, 37 > (31+41)/2.
222343 = 11*17*29*41 and 11 > (7+13)/2, 17 > (13+19)/2, 29 > (23+31)/2, 41 > (37+43)/2.
283679 = 11*17*37*41 and 11 > (7+13)/2, 17 > (13+19)/2, 37 > (31+41)/2, 41 > (37+43)/2.
		

Crossrefs

Programs

  • Mathematica
    strongQ[p_] := p > 2 && 2*p > Total[NextPrime[p, {-1, 1}]]; Select[Range[1, 10^6, 2], (f = FactorInteger[#])[[;; , 2]] == {1, 1, 1, 1} && AllTrue[f[[;; , 1]], strongQ] &] (* Amiram Eldar, Sep 08 2023 *)

A108415 a(n) = 1, 2 or 3 (resp.) if prime(n) is weak, balanced or strong (resp.).

Original entry on oeis.org

1, 2, 1, 3, 1, 3, 1, 1, 3, 1, 3, 3, 1, 1, 2, 3, 1, 3, 3, 1, 3, 1, 1, 3, 3, 1, 3, 1, 1, 3, 1, 3, 1, 3, 1, 2, 3, 1, 2, 3, 1, 3, 1, 3, 1, 2, 3, 3, 1, 1, 3, 1, 3, 2, 2, 3, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 1, 3, 1, 1, 1, 3, 2, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 3, 1, 1, 3, 1, 3, 1, 3, 2, 3, 1, 1
Offset: 2

Views

Author

Zak Seidov, Jun 02 2005

Keywords

Comments

n >= 2: a(n) = 1, 2 or 3 (resp.) if n-th prime is in A051635, A006562 or A051634 (resp.).

Crossrefs

Programs

  • Maple
    p:= 2: q:= 3: r:= 5:
    for i from 2 to 200 do
      t:= q - (p+r)/2;
      A[i]:= piecewise(t<0,1,t=0,2,3);
      p:= q; q:= r; r:= nextprime(r);
    od:
    seq(A[i],i=2..200); # Robert Israel, Mar 25 2018
  • Mathematica
    A108415[n_]:=2+Sign[Prime[n]-1/2(Prime[n-1]+Prime[n+1])]
Previous Showing 21-30 of 41 results. Next