cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 41 results. Next

A109270 Numbers k such that k^2 > (1/2)*(prevprime(k^2) + nextprime(k^2)).

Original entry on oeis.org

4, 6, 10, 11, 14, 16, 17, 20, 22, 24, 26, 28, 30, 31, 36, 38, 39, 40, 45, 48, 50, 52, 54, 56, 57, 59, 62, 65, 66, 67, 70, 73, 74, 76, 79, 81, 84, 85, 87, 90, 91, 94, 95, 96, 97, 99, 100, 104, 105, 106, 109, 110, 111, 114, 115, 116, 120, 122, 123, 124, 125, 126, 130, 134
Offset: 1

Views

Author

Zak Seidov, Jun 24 2005

Keywords

Comments

One may call these k^2 the "strong squares" by analogy with A051634 (strong primes).

Examples

			4^2=16>(13+17)/2 so 4 is a term;
5^2 < (23+29)/2=26, so 5 is not a term;
6^2=36>(31+37)/2 so 6 is a term, etc.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) if n^2 > (1/2)*(prevprime(n^2)+nextprime(n^2)) then n else fi end: seq(a(n),n=2..150); # Emeric Deutsch, Jun 26 2005
  • Mathematica
    prQ[n_]:=Module[{n2=n^2},n2>(NextPrime[n2]+NextPrime[n2,-1])/2]; Select[ Range[2,150],prQ] (* Harvey P. Dale, Feb 19 2012 *)

Extensions

More terms from Emeric Deutsch, Jun 26 2005

A159686 Sum of strong primes < 10^n.

Original entry on oeis.org

0, 508, 33551, 2751328, 216056493, 18084221125, 1548424793743, 135655041210402, 12054551765023934, 1084635554912125542, 98583402030663969332, 9035771475185456034956
Offset: 1

Views

Author

Cino Hilliard, Apr 19 2009

Keywords

Comments

Given 3 consecutive primes p1, p2, and p3, p2 is a strong prime if p2 > (p1+p2)/2.
Or, primes that are greater than the arithmetic mean of their immediate surrounding primes.
The number of strong primes < n ~ sum of strong primes < sqrt(n). For number of strong primes < 10^11 = 2014200162 and the sum of strong primes < 10^5.5 = 1972716560, for an error of 0.0206

Examples

			The strong primes < 10^2 are 11, 17, 29, 37, 41, 59, 67, 71, 79, 97. These add up to 508 which is the second term in the sequence.
		

Crossrefs

Programs

  • PARI
    lista(pmax) = {my(s = 0, pow = 10, p1 = 2, p2 = 3); forprime(p3 = 5, pmax, if(p2 > pow,print1(s, ", "); pow *= 10); if(2*p2 > p1+p3, s += p2); p1 = p2; p2 = p3);} \\ Amiram Eldar, Jul 02 2024

Extensions

Edited by N. J. A. Sloane, Apr 20 2009
a(11)-a(12) from Amiram Eldar, Jul 02 2024

A159687 Number of strong primes < 10^n.

Original entry on oeis.org

0, 10, 73, 574, 4543, 37723, 320991, 2796946, 24758534, 222126290, 2014200162, 18425778658
Offset: 1

Views

Author

Cino Hilliard, Apr 19 2009

Keywords

Comments

Given 3 consecutive primes p1, p2, and p3, p2 is a strong prime if p2 > (p1+p2)/2.
Or, primes that are greater than the arithmetic mean of their immediate surrounding primes.
The number of strong primes < n ~ sum of strong primes < sqrt(n). The number of strong primes < 10^11 = 2014200162 and the sum of strong primes < 10^5.5 = 1972716560, for an error of 0.0206.

Examples

			a(2) = 10 because there are 10 strong primes < 10^2: 11, 17, 29, 37, 41, 59, 67, 71, 79, and 97.
		

Crossrefs

Programs

  • Other
    See the link for Gcc programs that count and sum these primes.
    
  • PARI
    lista(pmax) = {my(c = 0, pow = 10, p1 = 2, p2 = 3); forprime(p3 = 5, pmax, if(p2 > pow,print1(c, ", "); pow *= 10); if(2*p2 > p1+p3, c++); p1 = p2; p2 = p3);} \\ Amiram Eldar, Jul 02 2024

Extensions

Edited by N. J. A. Sloane, Apr 20 2009
a(11) corrected by Bill McEachen, Oct 18 2023
a(12) from Amiram Eldar, Jul 02 2024

A175145 Primes associated with A175102.

Original entry on oeis.org

281, 311, 495511, 495557, 496187, 496229, 496259, 496303, 496333, 496343, 496399, 496439, 496459, 496499, 496549, 496583, 496631, 496763, 497153, 497177, 497239, 497261, 497279, 497291, 497297, 497303, 497411, 497417, 497449, 497461, 497479, 498073, 498119, 498181, 498227, 498259, 498331, 498361, 498391, 498409, 498803, 498881, 507607
Offset: 1

Views

Author

G. L. Honaker, Jr., Dec 02 2010

Keywords

Crossrefs

Programs

  • PARI
    my(q=3, r=2, s=0); forprime(p=5,default(primelimit),(s+=sign(r+0-2*(r=q)+q=p))||print1(r, ", "))

Extensions

More terms from Chris K. Caldwell

A362017 a(n) is the leading prime in the n-th prime sublist defined in A348168.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 23, 29, 37, 53, 59, 67, 79, 89, 97, 127, 137, 149, 157, 163, 173, 179, 191, 197, 211, 223, 239, 251, 293, 307, 331, 347, 353, 359, 367, 397, 409, 419, 431, 439, 449, 457, 479, 521, 541, 557, 587, 631, 673, 683, 691, 701, 719, 787, 809, 821
Offset: 1

Views

Author

Ya-Ping Lu, Apr 04 2023

Keywords

Comments

If Conjecture 2 in A348168 is true, lim_{n->infinity} a(n)/prime(round((n-1)*e)+1) = 1, where e is Euler's number.
If a term p (>2) is from a single-prime sublist (A356271), then p is a weak prime (A051635) or a balanced prime (A006562). Otherwise, p is a strong prime (A051634).
The definition divides the primes into maximal sublists such that gaps between adjacent primes in a sublist are smaller than the gap that precedes the sublist and no larger than the first gap within the sublist. - Peter Munn, Jul 07 2025

Examples

			According to the definition in A348168, prime numbers are divided into sublists, L_1, L_2, L_3,..., in which L_n = [p(n,1), p(n,2), ..., p(n,m(n))], where p(n,k) is the k-th prime and m(n) the number of primes in the n-th sublist L_n. Thus, a(n) = p(n,1). The first sublist L_1 = [2]. If p(n,1) <= (prevprime(p(n,1)) + nextprime(p(n,1)))/2, then L_n has only 1 prime, p(n,1). Otherwise, m(n) is the largest integer such that g(n,1) >= g(n,i), where g(n,i) = p(n,i+1) - p(n,i) and 2 <= i <= m(n).
The first 32 primes, for example, are divided into 16 prime sublists:
  [2],
  [3],
  [5],
  [7],
  [11,13],
  [17,19],
  [23],
  [29,31],
  [37,41,43,47],
  [53],
  [59,61],
  [67,71,73],
  [79,83],
  [89],
  [97,101,103,107,109,113],
  [127,131].
The leading primes in these sublists are: 2, 3, 5, 7, 11, 17, 23, 29, 37, 53, 59, 67, 79, 89, 97, 127. Therefore, a(1) = 2, a(2) = 3, ..., and a(16) = 127.
		

Crossrefs

Programs

  • Python
    from sympy import nextprime; R = [2]; L = [2]
    for n in range(2, 57):
        p0 = L[-1]; p1 = nextprime(p0); M = [p1]; g0 = p1-p0; p = nextprime(p1); g1 = p-p1
        while g1 < g0 and p-p1 <= g1: M.append(p); p1 = p; p = nextprime(p)
        L = M; R.append(L[0])
    print(*R, sep =', ')

A364778 Products of two distinct strong primes.

Original entry on oeis.org

121, 187, 289, 319, 407, 451, 493, 629, 649, 697, 737, 781, 841, 869, 1003, 1067, 1073, 1111, 1139, 1177, 1189, 1207, 1343, 1369, 1397, 1507, 1517, 1639, 1649, 1681, 1711, 1717, 1793, 1819, 1943, 1969, 2059, 2101, 2159, 2167, 2183, 2291, 2329, 2419, 2453, 2479, 2497, 2533, 2627, 2629, 2747
Offset: 1

Views

Author

Massimo Kofler, Aug 07 2023

Keywords

Comments

Strong primes: prime(n) > (prime(n-1) + prime(n+1))/2.

Examples

			121 = 11^2 and 11 > (7+13)/2.
187 = 11*17 and 11 > (7+13)/2, 17 > (13+19)/2.
493 = 17*29 and 17 > (13+19)/2, 29 > (23+31)/2.
		

Crossrefs

Programs

  • Mathematica
    strongQ[p_] := p > 2 && 2*p > Total[NextPrime[p, {-1, 1}]]; Select[Range[1, 3000, 2], MemberQ[{{1, 1}, {2}}, (f = FactorInteger[#])[[;; , 2]]] && AllTrue[f[[;; , 1]], strongQ] &] (* Amiram Eldar, Aug 07 2023 *)

Extensions

Definition clarified by N. J. A. Sloane, Oct 08 2023

A054816 Fourth term of strong prime sextets: p(m-2)-p(m-3) > p(m-1)-p(m-2) > p(m)-p(m-1) > p(m+1)-p(m) > p(m+2)-p(m+1).

Original entry on oeis.org

1867, 2531, 3457, 9613, 21487, 23011, 25237, 26107, 32183, 33403, 33931, 39097, 40813, 41227, 44263, 47287, 48817, 55897, 57787, 67033, 70117, 74287, 74707, 74713, 75149, 75161, 82981, 84313, 87869, 88411, 88657, 103801, 103903
Offset: 0

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

A054817 Fifth term of strong prime sextets: p(m-3)-p(m-4) > p(m-2)-p(m-3) > p(m-1)-p(m-2) > p(m)-p(m-1) > p(m+1)-p(m).

Original entry on oeis.org

1871, 2539, 3461, 9619, 21491, 23017, 25243, 26111, 32189, 33409, 33937, 39103, 40819, 41231, 44267, 47293, 48821, 55901, 57791, 67043, 70121, 74293, 74713, 74717, 75161, 75167, 82997, 84317, 87877, 88423, 88661, 103811, 103913
Offset: 0

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

A155189 Square-weak primes.

Original entry on oeis.org

3, 5, 7, 13, 19, 23, 31, 43, 47, 53, 61, 73, 83, 89, 103, 109, 113, 131, 139, 151, 157, 167, 173, 181, 193, 199, 211, 229, 233, 241, 257, 263, 271, 283, 293, 313, 317, 337, 349, 353, 359, 373, 383, 389, 401, 409, 421, 433, 443, 449, 463, 467, 491, 503, 509, 523
Offset: 1

Views

Author

Keywords

Comments

5^2 = 25 < 29 = (3^2+7^2)/2, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p0=Prime[n];p1=Prime[n+1];p2=Prime[n+2];If[p1^2<(p0^2+p2^2)/2,AppendTo[lst,p1]],{n,5!}];lst
    Select[Partition[Prime[Range[100]],3,1],#[[2]]^2<(#[[1]]^2+#[[3]]^2)/2&][[All,2]] (* Harvey P. Dale, May 01 2021 *)

A235874 First term of the earliest sequence of n consecutive strong primes.

Original entry on oeis.org

11, 37, 1657, 1847, 74687, 322193, 5051341, 11938853, 245333213, 397597169, 130272314657, 1273135176871
Offset: 1

Views

Author

Giovanni Resta, Jan 16 2014

Keywords

Comments

A strong prime is a prime p(n) such that p(n) > (p(n-1) + p(n+1))/2.

Examples

			a(2) = 37 because the two consecutive primes 37 and 41 are both strong and are the first such pair.
		

Crossrefs

Previous Showing 31-40 of 41 results. Next