A109270
Numbers k such that k^2 > (1/2)*(prevprime(k^2) + nextprime(k^2)).
Original entry on oeis.org
4, 6, 10, 11, 14, 16, 17, 20, 22, 24, 26, 28, 30, 31, 36, 38, 39, 40, 45, 48, 50, 52, 54, 56, 57, 59, 62, 65, 66, 67, 70, 73, 74, 76, 79, 81, 84, 85, 87, 90, 91, 94, 95, 96, 97, 99, 100, 104, 105, 106, 109, 110, 111, 114, 115, 116, 120, 122, 123, 124, 125, 126, 130, 134
Offset: 1
4^2=16>(13+17)/2 so 4 is a term;
5^2 < (23+29)/2=26, so 5 is not a term;
6^2=36>(31+37)/2 so 6 is a term, etc.
-
a:=proc(n) if n^2 > (1/2)*(prevprime(n^2)+nextprime(n^2)) then n else fi end: seq(a(n),n=2..150); # Emeric Deutsch, Jun 26 2005
-
prQ[n_]:=Module[{n2=n^2},n2>(NextPrime[n2]+NextPrime[n2,-1])/2]; Select[ Range[2,150],prQ] (* Harvey P. Dale, Feb 19 2012 *)
A159686
Sum of strong primes < 10^n.
Original entry on oeis.org
0, 508, 33551, 2751328, 216056493, 18084221125, 1548424793743, 135655041210402, 12054551765023934, 1084635554912125542, 98583402030663969332, 9035771475185456034956
Offset: 1
The strong primes < 10^2 are 11, 17, 29, 37, 41, 59, 67, 71, 79, 97. These add up to 508 which is the second term in the sequence.
-
lista(pmax) = {my(s = 0, pow = 10, p1 = 2, p2 = 3); forprime(p3 = 5, pmax, if(p2 > pow,print1(s, ", "); pow *= 10); if(2*p2 > p1+p3, s += p2); p1 = p2; p2 = p3);} \\ Amiram Eldar, Jul 02 2024
A159687
Number of strong primes < 10^n.
Original entry on oeis.org
0, 10, 73, 574, 4543, 37723, 320991, 2796946, 24758534, 222126290, 2014200162, 18425778658
Offset: 1
a(2) = 10 because there are 10 strong primes < 10^2: 11, 17, 29, 37, 41, 59, 67, 71, 79, and 97.
-
See the link for Gcc programs that count and sum these primes.
-
lista(pmax) = {my(c = 0, pow = 10, p1 = 2, p2 = 3); forprime(p3 = 5, pmax, if(p2 > pow,print1(c, ", "); pow *= 10); if(2*p2 > p1+p3, c++); p1 = p2; p2 = p3);} \\ Amiram Eldar, Jul 02 2024
Original entry on oeis.org
281, 311, 495511, 495557, 496187, 496229, 496259, 496303, 496333, 496343, 496399, 496439, 496459, 496499, 496549, 496583, 496631, 496763, 497153, 497177, 497239, 497261, 497279, 497291, 497297, 497303, 497411, 497417, 497449, 497461, 497479, 498073, 498119, 498181, 498227, 498259, 498331, 498361, 498391, 498409, 498803, 498881, 507607
Offset: 1
-
my(q=3, r=2, s=0); forprime(p=5,default(primelimit),(s+=sign(r+0-2*(r=q)+q=p))||print1(r, ", "))
A362017
a(n) is the leading prime in the n-th prime sublist defined in A348168.
Original entry on oeis.org
2, 3, 5, 7, 11, 17, 23, 29, 37, 53, 59, 67, 79, 89, 97, 127, 137, 149, 157, 163, 173, 179, 191, 197, 211, 223, 239, 251, 293, 307, 331, 347, 353, 359, 367, 397, 409, 419, 431, 439, 449, 457, 479, 521, 541, 557, 587, 631, 673, 683, 691, 701, 719, 787, 809, 821
Offset: 1
According to the definition in A348168, prime numbers are divided into sublists, L_1, L_2, L_3,..., in which L_n = [p(n,1), p(n,2), ..., p(n,m(n))], where p(n,k) is the k-th prime and m(n) the number of primes in the n-th sublist L_n. Thus, a(n) = p(n,1). The first sublist L_1 = [2]. If p(n,1) <= (prevprime(p(n,1)) + nextprime(p(n,1)))/2, then L_n has only 1 prime, p(n,1). Otherwise, m(n) is the largest integer such that g(n,1) >= g(n,i), where g(n,i) = p(n,i+1) - p(n,i) and 2 <= i <= m(n).
The first 32 primes, for example, are divided into 16 prime sublists:
[2],
[3],
[5],
[7],
[11,13],
[17,19],
[23],
[29,31],
[37,41,43,47],
[53],
[59,61],
[67,71,73],
[79,83],
[89],
[97,101,103,107,109,113],
[127,131].
The leading primes in these sublists are: 2, 3, 5, 7, 11, 17, 23, 29, 37, 53, 59, 67, 79, 89, 97, 127. Therefore, a(1) = 2, a(2) = 3, ..., and a(16) = 127.
-
from sympy import nextprime; R = [2]; L = [2]
for n in range(2, 57):
p0 = L[-1]; p1 = nextprime(p0); M = [p1]; g0 = p1-p0; p = nextprime(p1); g1 = p-p1
while g1 < g0 and p-p1 <= g1: M.append(p); p1 = p; p = nextprime(p)
L = M; R.append(L[0])
print(*R, sep =', ')
A364778
Products of two distinct strong primes.
Original entry on oeis.org
121, 187, 289, 319, 407, 451, 493, 629, 649, 697, 737, 781, 841, 869, 1003, 1067, 1073, 1111, 1139, 1177, 1189, 1207, 1343, 1369, 1397, 1507, 1517, 1639, 1649, 1681, 1711, 1717, 1793, 1819, 1943, 1969, 2059, 2101, 2159, 2167, 2183, 2291, 2329, 2419, 2453, 2479, 2497, 2533, 2627, 2629, 2747
Offset: 1
121 = 11^2 and 11 > (7+13)/2.
187 = 11*17 and 11 > (7+13)/2, 17 > (13+19)/2.
493 = 17*29 and 17 > (13+19)/2, 29 > (23+31)/2.
-
strongQ[p_] := p > 2 && 2*p > Total[NextPrime[p, {-1, 1}]]; Select[Range[1, 3000, 2], MemberQ[{{1, 1}, {2}}, (f = FactorInteger[#])[[;; , 2]]] && AllTrue[f[[;; , 1]], strongQ] &] (* Amiram Eldar, Aug 07 2023 *)
A054816
Fourth term of strong prime sextets: p(m-2)-p(m-3) > p(m-1)-p(m-2) > p(m)-p(m-1) > p(m+1)-p(m) > p(m+2)-p(m+1).
Original entry on oeis.org
1867, 2531, 3457, 9613, 21487, 23011, 25237, 26107, 32183, 33403, 33931, 39097, 40813, 41227, 44263, 47287, 48817, 55897, 57787, 67033, 70117, 74287, 74707, 74713, 75149, 75161, 82981, 84313, 87869, 88411, 88657, 103801, 103903
Offset: 0
A054817
Fifth term of strong prime sextets: p(m-3)-p(m-4) > p(m-2)-p(m-3) > p(m-1)-p(m-2) > p(m)-p(m-1) > p(m+1)-p(m).
Original entry on oeis.org
1871, 2539, 3461, 9619, 21491, 23017, 25243, 26111, 32189, 33409, 33937, 39103, 40819, 41231, 44267, 47293, 48821, 55901, 57791, 67043, 70121, 74293, 74713, 74717, 75161, 75167, 82997, 84317, 87877, 88423, 88661, 103811, 103913
Offset: 0
A155189
Square-weak primes.
Original entry on oeis.org
3, 5, 7, 13, 19, 23, 31, 43, 47, 53, 61, 73, 83, 89, 103, 109, 113, 131, 139, 151, 157, 167, 173, 181, 193, 199, 211, 229, 233, 241, 257, 263, 271, 283, 293, 313, 317, 337, 349, 353, 359, 373, 383, 389, 401, 409, 421, 433, 443, 449, 463, 467, 491, 503, 509, 523
Offset: 1
-
lst={};Do[p0=Prime[n];p1=Prime[n+1];p2=Prime[n+2];If[p1^2<(p0^2+p2^2)/2,AppendTo[lst,p1]],{n,5!}];lst
Select[Partition[Prime[Range[100]],3,1],#[[2]]^2<(#[[1]]^2+#[[3]]^2)/2&][[All,2]] (* Harvey P. Dale, May 01 2021 *)
A235874
First term of the earliest sequence of n consecutive strong primes.
Original entry on oeis.org
11, 37, 1657, 1847, 74687, 322193, 5051341, 11938853, 245333213, 397597169, 130272314657, 1273135176871
Offset: 1
a(2) = 37 because the two consecutive primes 37 and 41 are both strong and are the first such pair.
Comments