cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 270 results. Next

A128187 Matrix product A128174 * A051731 read by rows.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 2, 0, 1, 3, 0, 1, 0, 1, 3, 3, 1, 1, 0, 1, 4, 0, 1, 0, 1, 0, 1, 4, 4, 1, 2, 0, 1, 0, 1, 5, 0, 2, 0, 1, 0, 1, 0, 1, 5, 5, 1, 2, 1, 1, 0, 1, 0, 1, 6, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 6, 6, 2, 3, 1, 2, 0, 1, 0, 1, 0, 1, 7, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 7, 7, 2, 3, 1, 2, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Mar 07 2007

Keywords

Examples

			First few rows of the triangle are:
1;
1, 1;
2, 0, 1;
2, 2, 0, 1;
3, 0, 1, 0, 1;
3, 3, 1, 1, 0, 1;
4, 0, 1, 0, 1, 0, 1;
4, 4, 1, 2, 0, 1, 0, 1;
...
		

Crossrefs

Cf. A128188 (row sums), A128174, A051731.

Programs

Formula

A128174 * A051731 as infinite lower triangular matrices.

A129237 A051731 * A129234.

Original entry on oeis.org

1, 3, 2, 4, 0, 3, 7, 5, 0, 4, 6, 0, 0, 0, 5, 12, 6, 7, 0, 0, 6, 8, 0, 0, 0, 0, 0, 7, 15, 10, 0, 9, 0, 0, 0, 8, 13, 0, 8, 0, 0, 0, 0, 0, 9, 18, 8, 0, 0, 11, 0, 0, 0, 0, 10
Offset: 1

Views

Author

Gary W. Adamson, Apr 05 2007

Keywords

Comments

Left border = Sigma(n), A000203: (1, 3, 4, 7, 6, 12, 8, ...). A129236 = Moebius transform of A129234.

Examples

			First few rows of the triangle:
   1;
   3,  2;
   4,  0, 3;
   7,  5, 0, 4;
   6,  0, 0, 0, 5;
  12,  6, 7, 0, 0, 6;
   8,  0, 0, 0, 0, 0, 7;
  15, 10, 0, 9, 0, 0, 0, 8;
  ...
		

Crossrefs

Formula

A051731 * A129234 as infinite lower triangular matrices.

A129353 A051731 * A115361.

Original entry on oeis.org

1, 2, 1, 1, 0, 1, 3, 2, 0, 1, 1, 0, 0, 0, 1, 2, 1, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 4, 3, 0, 2, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 2, 3, 1, 0, 2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Apr 10 2007

Keywords

Comments

The inverse Moebius transform of the first column of A115361 which is A209229 gives the first column of this sequence.

Examples

			First few rows of the triangle are:
  1;
  2, 1;
  1, 0, 1;
  3, 2, 0, 1;
  1, 0, 0, 0, 1;
  2, 1, 2, 0, 0, 1;
  1, 0, 0, 0, 0, 0, 1;
  4, 3, 0, 2, 0, 0, 0, 1;
  ...
		

Crossrefs

Column 1 is A001511.
Row sums are A129628 (inverse Moebius transform of A001511).

Programs

  • Maple
    A129353 := proc(n,k)
            add( A051731(n,j)*A115361(j-1,k-1),j=k..n) ;
    end proc: # R. J. Mathar, Jul 14 2012
  • Mathematica
    T[n_, k_] := If[Mod[n, k] != 0, 0, 1 + IntegerExponent[n/k, 2]];
    Table[T[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 08 2020, from PARI *)
  • PARI
    T(n, k)={if(n%k, 0, 1 + valuation(n/k,2))} \\ Andrew Howroyd, Aug 04 2018

Formula

T(n,k) = A001511(n/k) for k | n, T(n,k) = 0 otherwise. - Andrew Howroyd, Aug 04 2018

A130093 A051731 * a lower triangular matrix with A036987 on the main diagonal and the rest zeros.

Original entry on oeis.org

1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, May 06 2007

Keywords

Comments

Right border = A036987, the Fredholm-Rueppel sequence, (1, 1, 0, 1, 0, 0, 0, 1, 0, ...). Row sums = the ruler function, A001511: (1, 2, 1, 3, 1, 2, 1, 4, ...).
A130093 also = A047999 (Sierpinski's gasket) * A036987 diagonalized, as infinite lower triangular matrices. - Gary W. Adamson, Oct 21 2009
Eigensequence of A130093 = A001511, (same sequence as row sums). - Gary W. Adamson, Oct 21 2009
Equals Sierpinski's gasket, A047999 * A036987 (diagonalized); as infinite lower triangular matrices. - Gary W. Adamson, Oct 26 2009

Examples

			First few rows of the triangle are:
  1;
  1, 1;
  1, 0, 0;
  1, 1, 0, 1;
  1, 0, 0, 0, 0;
  1, 1, 0, 0, 0, 0;
  1, 0, 0, 0, 0, 0, 0;
  1, 1, 0, 1, 0, 0, 0, 1;
  ...
		

Crossrefs

Cf. A047999. - Gary W. Adamson, Oct 21 2009, Oct 26 2009

Formula

Inverse Moebius transform of a lower triangular matrix with A036987 (the Fredholm-Rueppel sequence) on the main diagonal and the rest zeros.

A134673 A051731 + A127448 - I where I is the Identity matrix (A023531).

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 1, -1, 0, 4, 0, 0, 0, 0, 5, 2, -1, -2, 0, 0, 6, 0, 0, 0, 0, 0, 0, 7, 1, 1, 0, -3, 0, 0, 0, 8, 1, 0, -2, 0, 0, 0, 0, 0, 9, 2, -1, 0, 0, -4, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1, 3, 1, -3, 0, -5, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 2, -1
Offset: 1

Views

Author

Gary W. Adamson, Nov 05 2007

Keywords

Comments

Row sums = A073757: (1, 2, 3, 4, 5, 5, 7, 7, 8, 7, ...).

Examples

			First few rows of the triangle:
  1;
  0,  2;
  0,  0,  3;
  1, -1,  0,  4;
  0,  0,  0,  0,  5;
  2, -1, -2,  0,  0,  6;
  0,  0,  0,  0,  0,  0,  7;
  1,  1,  0, -3,  0,  0,  0,  8;
  ... [Typo corrected by _N. J. A. Sloane_, May 22 2010]
		

Crossrefs

Programs

Formula

a(n) = A051731(n) + A127448(n) - A023531(n).
T(n,k) = k*A008683(n/k) + 1 if k divides n and k < n, T(n,k)=n for k=n, and T(n,k)=0 otherwise. - Max Alekseyev, Jan 07 2015

Extensions

More terms from Max Alekseyev, Apr 03 2022

A143112 A051731 * A032742 = sum of largest proper divisors of the divisors of n.

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 8, 5, 8, 2, 14, 2, 10, 8, 16, 2, 18, 2, 20, 10, 14, 2, 30, 7, 16, 14, 26, 2, 32, 2, 32, 14, 20, 10, 44, 2, 22, 16, 44, 2, 42, 2, 38, 26, 26, 2, 62, 9, 38, 20, 44, 2, 54, 14, 58, 22, 32, 2, 80, 2, 34, 34, 64, 16, 62, 2, 56, 26, 58, 2, 96, 2, 40, 38, 62, 14, 72, 2, 92
Offset: 1

Views

Author

Gary W. Adamson and Mats Granvik, Jul 25 2008

Keywords

Comments

Inverse Möbius transform of A032742. - Antti Karttunen, Sep 25 2018

Examples

			a(12) = 14. The divisors of 12 are shown in row 12 of triangle A127093: (1, 2, 3, 4, 0, 6, 0, 0, 0, 0, 0, 12). The largest proper divisors of these terms are (1, 1, 1, 2, 0, 3, 0, 0, 0, 0, 0, 6), sum = 14. Or, we can take row of triangle A051731: (1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1) dot (1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6) = (1 + 1 + 1 + 2 + 0 + 3 + 0 + 0 + 0 + 0 + 0 + 6) = 14, where A032742 = (1, 1, 1, 2, 1, 3, 1, 4, 3, 5,...).
		

Crossrefs

Programs

Formula

A051731 * A032742, where A051731 = the inverse Mobius transform and A032742 = the largest proper divisors of n: (1, 1, 1, 3, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7,...).
a(n) = Sum_{d|n} A032742(d). - Antti Karttunen, Sep 25 2018

Extensions

More terms from R. J. Mathar, Jan 19 2009

A168508 Triangle read by rows: A101688 * A051731.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1, 1, 5, 2, 2, 1, 1, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 6, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 7, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 27 2009

Keywords

Comments

More precisely, form the product of the lower triangular matrix T defined in A101688 and the lower triangular matrix T defined in A051731. - N. J. A. Sloane, Dec 05 2020
Row sums = A060831: (1, 2, 4, 5, 7, 9, 11, 12, 15,...).

Examples

			First few rows of the triangle =
1;
1, 1;
2, 1, 1;
2, 1, 1, 1;
3, 1, 1, 1, 1;
3, 2, 1, 1, 1, 1;
4, 2, 1, 1, 1, 1, 1;
4, 2, 1, 1, 1, 1, 1, 1;
5, 2, 2, 1, 1, 1, 1, 1, 1;
5, 3, 2, 1, 1, 1, 1, 1, 1, 1;
6, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1;
6, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
7, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;
7, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
8, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
8, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
9, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
...
		

Crossrefs

Extensions

a(29) = 1 inserted and more terms from Georg Fischer, May 29 2023

A168509 Triangle read by rows, A051731 * A101688.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 27 2009

Keywords

Comments

Row sums = A079247: (1, 2, 3, 4, 4, 7, 5, 8, 8, 10,...).

Examples

			First few rows of the triangle =
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 0, 1, 1, 1;
1, 2, 1, 1, 1, 1,
1, 0, 0, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1;
1, 1, 1, 0, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1;
1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1;
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
1, 1, 2, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1;
...
		

Crossrefs

Formula

Triangle read by rows, inverse Mobius transform of A101688; where A051731 = the
inverse Mobius transform operator.

A176702 Triangle T(n,k) read by rows. A051731(n,k)-A051731(n,k+1).

Original entry on oeis.org

1, 0, 1, 1, -1, 1, 0, 1, -1, 1, 1, 0, 0, -1, 1, 0, 0, 1, 0, -1, 1, 1, 0, 0, 0, 0, -1, 1, 0, 1, -1, 1, 0, 0, -1, 1, 1, -1, 1, 0, 0, 0, 0, -1, 1, 0, 1, 0, -1, 1, 0, 0, 0, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 1, 0, 0, 0, -1
Offset: 1

Views

Author

Mats Granvik, Gary W. Adamson, Apr 24 2010

Keywords

Comments

Matrix inverse of A134541.
The subsequence of A180430 beginning from the second column, divided by 2, equals this sequence. [From Mats Granvik, Sep 04 2010]

Examples

			Triangle begins:
1
0...1
1..-1...1
0...1..-1...1
1...0...0..-1...1
0...0...1...0..-1...1
1...0...0...0...0..-1...1
0...1..-1...1...0...0..-1...1
1..-1...1...0...0...0...0..-1...1
0...1...0..-1...1...0...0...0..-1...1
1...0...0...0...0...0...0...0...0..-1...1
0...0...0...1..-1...1...0...0...0...0..-1...1
		

Crossrefs

Cf. A176702*A000012=A051731. Row sums equals A000012.

A127470 Triangle equal to the matrix product A127466 * A051731.

Original entry on oeis.org

1, 4, 2, 9, 0, 6, 16, 12, 0, 8, 25, 0, 0, 0, 20, 36, 18, 24, 0, 0, 12, 49, 0, 0, 0, 0, 0, 42, 64, 56, 0, 48, 0, 0, 0, 32, 81, 0, 72, 0, 0, 0, 0, 0, 54, 100, 50, 0, 0, 80, 0, 0, 0, 0, 40, 121, 0, 0, 0, 0, 0, 0, 0, 0, 0, 110, 144, 108, 96, 72, 0, 72, 0, 0, 0, 0, 0, 48
Offset: 1

Views

Author

Gary W. Adamson, Jan 15 2007

Keywords

Examples

			First few rows of the triangle are:
1;
4, 2;
9, 0, 6;
16, 12, 0, 8;
25, 0, 0, 0, 20;
36, 18, 24, 0, 0, 12;
49, 0, 0, 0, 0, 0, 42;
64, 56, 0, 48, 0, 0, 0, 32;
81, 0, 72, 0, 0, 0, 0, 0, 54;
...
		

Crossrefs

Cf. A127466, A051731, A127469 (row sums), A061949.

Programs

Formula

T(n,1) = n^2.
T(n,n) = n*phi(n) = A002618(n).

Extensions

Terms corrected by R. J. Mathar, Sep 08 2013
Previous Showing 11-20 of 270 results. Next