cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060831 a(n) = Sum_{k=1..n} (number of odd divisors of k) (cf. A001227).

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 9, 11, 12, 15, 17, 19, 21, 23, 25, 29, 30, 32, 35, 37, 39, 43, 45, 47, 49, 52, 54, 58, 60, 62, 66, 68, 69, 73, 75, 79, 82, 84, 86, 90, 92, 94, 98, 100, 102, 108, 110, 112, 114, 117, 120, 124, 126, 128, 132, 136, 138, 142, 144, 146, 150, 152, 154, 160
Offset: 0

Views

Author

Henry Bottomley, May 01 2001

Keywords

Comments

The old definition was "Number of sums less than or equal to n of sequences of consecutive positive integers (including sequences of length 1)."
In other words, a(n) is also the total number of partitions of all positive integers <= n into consecutive parts, n >= 1. - Omar E. Pol, Dec 03 2020
Starting with 1 = row sums of triangle A168508. - Gary W. Adamson, Nov 27 2009
The subsequence of primes in this sequence begins, through a(100): 2, 5, 7, 11, 17, 19, 23, 29, 37, 43, 47, 73, 79, 173, 181, 223, 227, 229, 233, 263. - Jonathan Vos Post, Feb 13 2010
Apart from the initial zero, a(n) is also the total number of subparts of the symmetric representations of sigma of all positive integers <= n. Hence a(n) is also the total number of subparts in the terraces of the stepped pyramid with n levels described in A245092. For more information see A279387 and A237593. - Omar E. Pol, Dec 17 2016
a(n) is also the total number of partitions of all positive integers <= n into an odd number of equal parts. - Omar E. Pol, May 14 2017
Zero together with the row sums of A235791. - Omar E. Pol, Dec 18 2020

Examples

			E.g., for a(7), we consider the odd divisors of 1,2,3,4,5,6,7, which gives 1,1,2,1,2,2,2 = 11. - _Jon Perry_, Mar 22 2004
Example illustrating the old definition: a(7) = 11 since 1, 2, 3, 4, 5, 6, 7, 1+2, 2+3, 3+4, 1+2+3 are all 7 or less.
From _Omar E. Pol_, Dec 02 2020: (Start)
Illustration of initial terms:
                              Diagram
   n   a(n)
   0     0                          _|
   1     1                        _|1|
   2     2                      _|1 _|
   3     4                    _|1  |1|
   4     5                  _|1   _| |
   5     7                _|1    |1 _|
   6     9              _|1     _| |1|
   7    11            _|1      |1  | |
   8    12          _|1       _|  _| |
   9    15        _|1        |1  |1 _|
  10    17      _|1         _|   | |1|
  11    19    _|1          |1   _| | |
  12    21   |1            |   |1  | |
...
a(n) is also the total number of horizontal line segments in the first n levels of the diagram. For n = 5 there are seven horizontal line segments, so a(5) = 7. Cf. A237048, A286001. (End)
From _Omar E. Pol_, Dec 19 2020: (Start)
a(n) is also the number of regions in the diagram of the symmetries of sigma after n stages, including the subparts, as shown below (Cf. A279387):
.                                                         _ _ _ _
.                                           _ _ _        |_ _ _  |_
.                               _ _ _      |_ _ _|       |_ _ _| |_|_
.                     _ _      |_ _  |_    |_ _  |_ _    |_ _  |_ _  |
.             _ _    |_ _|_    |_ _|_  |   |_ _|_  | |   |_ _|_  | | |
.       _    |_  |   |_  | |   |_  | | |   |_  | | | |   |_  | | | | |
.      |_|   |_|_|   |_|_|_|   |_|_|_|_|   |_|_|_|_|_|   |_|_|_|_|_|_|
.
.  0    1      2        4          5            7              9
(End)
		

Crossrefs

Zero together with the partial sums of A001227.

Programs

  • Maple
    A060831 := proc(n)
        add(numtheory[tau](n-i+1),i=1..ceil(n/2)) ;
    end proc:
    seq(A060831(n),n=0..100) ; # Wesley Ivan Hurt, Oct 02 2013
  • Mathematica
    f[n_] := Sum[ -(-1^k)Floor[n/(2k - 1)], {k, n}]; Table[ f[n], {n, 0, 65}] (* Robert G. Wilson v, Jun 16 2006 *)
    Accumulate[Table[Count[Divisors[n],?OddQ],{n,0,70}]] (* _Harvey P. Dale, Nov 26 2023 *)
  • PARI
    a(n)=local(c);c=0;for(i=1,n,c+=sumdiv(i,X,X%2));c
    
  • PARI
    for (n=0, 1000, s=n; d=3; while (n>=d, s+=n\d; d+=2); write("b060831.txt", n, " ", s); ) \\ Harry J. Smith, Jul 12 2009
    
  • PARI
    a(n)=my(n2=n\2); sum(k=1, sqrtint(n), n\k)*2-sqrtint(n)^2-sum(k=1, sqrtint(n2), n2\k)*2+sqrtint(n2)^2 \\ Charles R Greathouse IV, Jun 18 2015
    
  • Python
    def A060831(n): return n+sum(n//i for i in range(3,n+1,2)) # Chai Wah Wu, Jul 16 2022
    
  • Python
    from math import isqrt
    def A060831(n): return ((t:=isqrt(m:=n>>1))+(s:=isqrt(n)))*(t-s)+(sum(n//k for k in range(1,s+1))-sum(m//k for k in range(1,t+1))<<1) # Chai Wah Wu, Oct 23 2023

Formula

a(n) = Sum_{i=1..n} A001227(i).
a(n) = a(n-1) + A001227(n).
a(n) = n + floor(n/3) + floor(n/5) + floor(n/7) + floor(n/9) + ...
a(n) = A006218(n) - A006218(floor(n/2)).
a(n) = Sum_{i=1..ceiling(n/2)} A000005(n-i+1). - Wesley Ivan Hurt, Sep 30 2013
a(n) = Sum_{i=floor((n+2)/2)..n} A000005(i). - N. J. A. Sloane, Dec 06 2020, modified by Xiaohan Zhang, Nov 07 2022
G.f.: (1/(1 - x))*Sum_{k>=1} x^k/(1 - x^(2*k)). - Ilya Gutkovskiy, Dec 23 2016
a(n) ~ n*(log(2*n) + 2*gamma - 1) / 2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 30 2019

Extensions

Definition simplified by N. J. A. Sloane, Dec 05 2020

A101688 Once 1, once 0, repeat, twice 1, twice 0, repeat, thrice 1, thrice 0, ... and so on.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1
Offset: 0

Views

Author

Ralf Stephan, Dec 19 2004

Keywords

Comments

The definition is that of a linear sequence. Equivalently, define a (0,1) infinite lower triangular matrix T(n,k) (0 <= k <= n) by T(n,k) = 1 if k >= n/2, 0 otherwise, and read it by rows. The triangle T begins:
1
0 1
0 1 1
0 0 1 1
0 0 1 1 1
0 0 0 1 1 1
... The matrix T is used in A168508. [Comment revised by N. J. A. Sloane, Dec 05 2020]
Also, square array A read by antidiagonals upwards: A(n,k) = 1 if k >= n, 0 otherwise.
For n >= 1, T(n,k) = number of partitions of n into k parts of sizes 1 or 2. - Nicolae Boicu, Aug 23 2018
T(n, k) is the number of ways to distribute n balls to k unlabeled urns in such a way that no urn receives more than one ball (see Beeler). - Stefano Spezia, Jun 16 2023

Examples

			The array A (on the left) and the triangle T of its antidiagonals (on the right):
  1 1 1 1 1 1 1 1 1 ......... 1
  0 1 1 1 1 1 1 1 1 ........ 0 1
  0 0 1 1 1 1 1 1 1 ....... 0 1 1
  0 0 0 1 1 1 1 1 1 ...... 0 0 1 1
  0 0 0 0 1 1 1 1 1 ..... 0 0 1 1 1
  0 0 0 0 0 1 1 1 1 .... 0 0 0 1 1 1
  0 0 0 0 0 0 1 1 1 ... 0 0 0 1 1 1 1
  0 0 0 0 0 0 0 1 1 .. 0 0 0 0 1 1 1 1
  0 0 0 0 0 0 0 0 1 . 0 0 0 0 1 1 1 1 1
		

References

  • Robert A. Beeler, How to Count: An Introduction to Combinatorics and Its Applications, Springer International Publishing, 2015. See Proposition 4.2.1 at p. 98.

Crossrefs

Row sums of T (and antidiagonal sums of A) are A008619.

Programs

  • Mathematica
    rows = 15; A = Array[If[#1 <= #2, 1, 0]&, {rows, rows}]; Table[A[[i-j+1, j]], {i, 1, rows}, {j, 1, i}] // Flatten (* Jean-François Alcover, May 04 2017 *)
  • Python
    from math import isqrt
    def A101688(n): return isqrt((m:=n<<1)+1)-(isqrt((m<<2)+8)+1>>1)+1 # Chai Wah Wu, Feb 10 2023

Formula

G.f.: 1/((1 - x*y)*(1 - y)).
G.f. of k-th row of the array: x^(k-1)/(1 - x).
T(n, k) = 1 if binomial(k, n-k) > 0, otherwise 0. - Paul Barry, Aug 23 2005
From Boris Putievskiy, Jan 09 2013: (Start)
a(n) = floor((2*A002260(n)+1)/A003056(n)+3).
a(n) = floor((2*n-t*(t+1)+1)/(t+3)), where
t = floor((-1+sqrt(8*n-7))/2). (End)
a(n) = floor(sqrt(2*n+1)) - floor(sqrt(2*n+1) - 1/2). - Ridouane Oudra, Jul 16 2020
a(n) = A103128(n+1) - A003056(n). - Ridouane Oudra, Apr 09 2022
E.g.f. of k-th column of the array: exp(x)*Gamma(1+k, x)/k!. - Stefano Spezia, Jun 16 2023

Extensions

Edited by N. J. A. Sloane, Dec 05 2020

A168509 Triangle read by rows, A051731 * A101688.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 27 2009

Keywords

Comments

Row sums = A079247: (1, 2, 3, 4, 4, 7, 5, 8, 8, 10,...).

Examples

			First few rows of the triangle =
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 0, 1, 1, 1;
1, 2, 1, 1, 1, 1,
1, 0, 0, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1;
1, 1, 1, 0, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1;
1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1;
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
1, 1, 2, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1;
...
		

Crossrefs

Formula

Triangle read by rows, inverse Mobius transform of A101688; where A051731 = the
inverse Mobius transform operator.
Showing 1-3 of 3 results.