A098832 Square array read by antidiagonals: even-numbered rows of the table are of the form n*(n+m) and odd-numbered rows are of the form n*(n+m)/2.
1, 3, 3, 6, 8, 2, 10, 15, 5, 5, 15, 24, 9, 12, 3, 21, 35, 14, 21, 7, 7, 28, 48, 20, 32, 12, 16, 4, 36, 63, 27, 45, 18, 27, 9, 9, 45, 80, 35, 60, 25, 40, 15, 20, 5, 55, 99, 44, 77, 33, 55, 22, 33, 11, 11, 66, 120, 54, 96, 42, 72, 30, 48, 18, 24, 6, 78, 143, 65, 117, 52, 91, 39, 65, 26, 39, 13, 13
Offset: 1
Examples
Array begins as: 1, 3, 6, 10, 15, 21, 28, 36, 45 ... A000217; 3, 8, 15, 24, 35, 48, 63, 80, 99 ... A005563; 2, 5, 9, 14, 20, 27, 35, 44, 54 ... A000096; 5, 12, 21, 32, 45, 60, 77, 96, 117 ... A028347; 3, 7, 12, 18, 25, 33, 42, 52, 63 ... A027379; 7, 16, 27, 40, 55, 72, 91, 112, 135 ... A028560; 4, 9, 15, 22, 30, 39, 49, 60, 72 ... A055999; 9, 20, 33, 48, 65, 84, 105, 128, 153 ... A028566; 5, 11, 18, 26, 35, 45, 56, 68, 81 ... A056000; Antidiagonals begin as: 1; 3, 3; 6, 8, 2; 10, 15, 5, 5; 15, 24, 9, 12, 3; 21, 35, 14, 21, 7, 7; 28, 48, 20, 32, 12, 16, 4; 36, 63, 27, 45, 18, 27, 9, 9; 45, 80, 35, 60, 25, 40, 15, 20, 5; 55, 99, 44, 77, 33, 55, 22, 33, 11, 11;
Links
- G. C. Greubel, Antidiagonals n = 1..50, flattened
Crossrefs
Row m of array: A000217 (m=1), A005563 (m=2), A000096 (m=3), A028347 (m=4), A027379 (m=5), A028560 (m=6), A055999 (m=7), A028566 (m=8), A056000 (m=9), A098603 (m=10), A056115 (m=11), A098847 (m=12), A056119 (m=13), A098848 (m=14), A056121 (m=15), A098849 (m=16), A056126 (m=17), A098850 (m=18), A051942 (m=19).
Programs
-
Magma
A098832:= func< n,k | (1/4)*(3+(-1)^k)*(n+1)*(n-k+1) >; [A098832(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 31 2022
-
Mathematica
A098832[n_, k_]:= (1/4)*(3+(-1)^k)*(n+1)*(n-k+1); Table[A098832[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jul 31 2022 *)
-
SageMath
def A098832(n,k): return (1/4)*(3+(-1)^k)*(n+1)*(n-k+1) flatten([[A098832(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Jul 31 2022
Formula
Item m of row n of T is given (in infix form) by: n T m = n * (n + m) / (1 + m (mod 2)). E.g. Item 4 of row 3 of T: 3 T 4 = 14.
From G. C. Greubel, Jul 31 2022: (Start)
A(n, k) = (1/4)*(3 + (-1)^n)*k*(k+n) (array).
T(n, k) = (1/4)*(3 + (-1)^k)*(n+1)*(n-k+1) (antidiagonal triangle).
Sum_{k=1..n} T(n, k) = (1/8)*(n+1)*( (3*n-1)*(n+1) + (1+(-1)^n)/2 ).
T(2*n-1, n) = A181900(n).
T(2*n+1, n) = 2*A168509(n+1). (End)
Extensions
Missing terms added by G. C. Greubel, Jul 31 2022
Comments