cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A271567 Convolution of nonzero triangular numbers (A000217) and nonzero tetradecagonal numbers (A051866).

Original entry on oeis.org

1, 17, 87, 287, 742, 1638, 3234, 5874, 9999, 16159, 25025, 37401, 54236, 76636, 105876, 143412, 190893, 250173, 323323, 412643, 520674, 650210, 804310, 986310, 1199835, 1448811, 1737477, 2070397, 2452472, 2888952, 3385448, 3947944, 4582809, 5296809, 6097119
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 12 2016

Keywords

Comments

More generally, the ordinary generating function for the convolution of triangular numbers and k-gonal numbers is (1 + (k - 3)*x)/(1 - x)^6.

Crossrefs

Cf. similar sequences of the convolution of triangular numbers and k-gonal numbers: A005585 (k=4), A051836 (k=5), A034263 (k=6), A027800 (k=7), A051843 (k=8), A051877 (k=9), A051878 (k=10), A051879 (k=11), A051880 (k=12), A056118 (k=13), this sequence (k=14).

Programs

  • Magma
    /* From definition: */ P:=func; /*, where P(n, k) is the n-th k-gonal number, */ [&+[P(n+1-i, 3)*P(i, 14): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Apr 18 2016
    
  • Magma
    [(n+1)*(n+2)*(n+3)*(n+4)*(12*n+5)/120: n in [0..40]]; // Bruno Berselli, Apr 18 2016
  • Mathematica
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 17, 87, 287, 742, 1638}, 40]
    Table[(n + 1) (n + 2) (n + 3) (n + 4) (12 n + 5)/120, {n, 0, 40}]

Formula

O.g.f.: (1 + 11*x)/(1 - x)^6.
E.g.f.: (120 + 1920*x + 3240*x^2 + 1520*x^3 + 245*x^4 + 12*x^5)*exp(x)/120.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = (n + 1)*(n + 2)*(n + 3)*(n + 4)*(12*n + 5)/120.
Sum_{n>=0} 1/a(n) = 20*((15552*(6*log(2) + 3*log(3) + 2*sqrt(3)*log(2 - sqrt(3)) + (2 - sqrt(3))*Pi) - 29449)/531867) = 1.07654258697...

Extensions

Edited by Bruno Berselli, Apr 18 2016

A271663 Convolution of nonzero squares (A000290) with nonzero pentagonal numbers (A000326).

Original entry on oeis.org

1, 9, 41, 131, 336, 742, 1470, 2682, 4587, 7447, 11583, 17381, 25298, 35868, 49708, 67524, 90117, 118389, 153349, 196119, 247940, 310178, 384330, 472030, 575055, 695331, 834939, 996121, 1181286, 1393016, 1634072, 1907400, 2216137, 2563617, 2953377, 3389163, 3874936
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 12 2016

Keywords

Comments

More generally, the ordinary generating function for the convolution of nonzero h-gonal numbers and k-gonal numbers is (1 + (h - 3)*x)*(1 + (k - 3)*x)/(1 - x)^6.

Crossrefs

Cf. A005585: convolution of nonzero squares with nonzero triangular numbers.
Cf. A033455: convolution of nonzero squares with themselves.
Cf. A051836 (after 0): convolution of nonzero triangular numbers with nonzero pentagonal numbers.

Programs

  • Magma
    /* From definition: */ P:=func; /*, where P(n,k) is the n-th k-gonal number, */ [&+[P(n+1-i,4)*P(i,5): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Apr 12 2016
    
  • Magma
    [(n+1)*(n+2)*(n+3)*(6*n^2+19*n+20)/120: n in [0..40]]; // Bruno Berselli, Apr 12 2016
  • Mathematica
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 9, 41, 131, 336, 742}, 40]
    Table[(n + 1) (n + 2) (n + 3) (6 n^2 + 19 n + 20)/120, {n, 0, 40}]
    With[{nmax = 50}, CoefficientList[Series[(120 + 960*x + 1440*x^2 + 680*x^3 + 115*x^4 + 6*x^5)*Exp[x]/120, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jun 07 2017 *)
  • PARI
    vector(40, n, n--; (n+1)*(n+2)*(n+3)*(6*n^2+19*n+20)/120) \\ Altug Alkan, Apr 12 2016
    

Formula

O.g.f.: (1 + x)*(1 + 2*x)/(1 - x)^6.
E.g.f.: (120 + 960*x + 1440*x^2 + 680*x^3 + 115*x^4 + 6*x^5)*exp(x)/120.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = (n + 1)*(n + 2)*(n + 3)*(6*n^2 + 19*n + 20)/120.
Sum_{n>=0} 1/a(n) = 1.149165731...

Extensions

Edited by Bruno Berselli, Apr 12 2016

A083504 Triangle read by rows: for 1 <= k <= n, T(n, k) is the total perimeter of all squares contained in a square grid with n rows and k columns.

Original entry on oeis.org

4, 8, 24, 12, 40, 80, 16, 56, 120, 200, 20, 72, 160, 280, 420, 24, 88, 200, 360, 560, 784, 28, 104, 240, 440, 700, 1008, 1344, 32, 120, 280, 520, 840, 1232, 1680, 2160, 36, 136, 320, 600, 980, 1456, 2016, 2640, 3300, 40, 152, 360, 680, 1120, 1680, 2352, 3120
Offset: 1

Views

Author

Artemario Tadeu Medeiros da Silva (artemario(AT)uol.com.br), Jun 09 2003

Keywords

Comments

T(n, n) = 4*A002415(n+1). Row sums are 4*A051836.

Examples

			T(3, 2) = 40 because the six 1 X 1 squares each have perimeter 4 and the two 2 X 2 squares each have perimeter 8.
		

Crossrefs

Formula

T(n, k) = (2k^3*n+6k^2*n+k^2+4k*n+2k-k^4-2k^3)/3.

Extensions

Edited by David Wasserman, Nov 18 2004

A301972 a(n) = n*(n^2 - 2*n + 4)*binomial(2*n,n)/((n + 1)*(n + 2)).

Original entry on oeis.org

0, 1, 4, 21, 112, 570, 2772, 13013, 59488, 266526, 1175720, 5123426, 22108704, 94645460, 402503220, 1702300725, 7165821120, 30043474230, 125523450360, 522857438070, 2172127120800, 9002522512620, 37233403401480, 153704429299746, 633442159732032, 2606543487445100, 10710790748646352, 43957192722175908
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 29 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the main diagonal of iterated partial sums array of n-gonal numbers (in other words, a(n) is the n-th (n+2)-dimensional n-gonal number, see also example).

Examples

			For n = 5 we have:
----------------------------
0   1    2    3     4    [5]
----------------------------
0,  1,   5,  12,   22,   35,  ... A000326 (pentagonal numbers)
0,  1,   6,  18,   40,   75,  ... A002411 (pentagonal pyramidal numbers)
0,  1,   7,  25,   65,  140,  ... A001296 (4-dimensional pyramidal numbers)
0,  1,   8,  33,   98,  238,  ... A051836 (partial sums of A001296)
0,  1,   9,  42,  140,  378,  ... A051923 (partial sums of A051836)
0,  1,  10,  52,  192, [570], ... A050494 (partial sums of A051923)
----------------------------
therefore a(5) = 570.
		

Crossrefs

Programs

  • Mathematica
    Table[n (n^2 - 2 n + 4) Binomial[2 n, n]/((n + 1) (n + 2)), {n, 0, 27}]
    nmax = 27; CoefficientList[Series[(-4 + 31 x - 66 x^2 + 28 x^3 + (4 - 7 x) (1 - 4 x)^(3/2))/(2 x^2 (1 - 4 x)^(3/2)), {x, 0, nmax}], x]
    nmax = 27; CoefficientList[Series[Exp[2 x] (4 - x + 2 x^2) BesselI[1, 2 x]/x - 2 Exp[2 x] (2 - x) BesselI[0, 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    Table[SeriesCoefficient[x (1 - 3 x + n x)/(1 - x)^(n + 3), {x, 0, n}], {n, 0, 27}]

Formula

O.g.f.: (-4 + 31*x - 66*x^2 + 28*x^3 + (4 - 7*x)*(1 - 4*x)^(3/2))/(2*x^2*(1 - 4*x)^(3/2)).
E.g.f.: exp(2*x)*(4 - x + 2*x^2)*BesselI(1,2*x)/x - 2*exp(2*x)*(2 - x)*BesselI(0,2*x).
a(n) = [x^n] x*(1 - 3*x + n*x)/(1 - x)^(n+3).
a(n) ~ 4^n*sqrt(n)/sqrt(Pi).
D-finite with recurrence: -(n+2)*(961*n-3215)*a(n) +4*(2081*n^2-4414*n-4668)*a(n-1) -28*(320*n-389)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jan 27 2020
Previous Showing 11-14 of 14 results.