cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 386 results. Next

A380264 a(n) is the numerator of the mean value of A051903(k) at the range k = 1..n.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 1, 5, 4, 13, 14, 4, 17, 9, 19, 23, 24, 13, 27, 29, 10, 31, 32, 35, 37, 19, 41, 43, 44, 3, 46, 51, 52, 53, 54, 14, 57, 29, 59, 31, 63, 32, 65, 67, 23, 35, 71, 25, 11, 79, 80, 41, 83, 43, 87, 45, 91, 46, 93, 19, 96, 97, 11, 105, 106, 107, 108, 55
Offset: 1

Views

Author

Amiram Eldar, Jan 18 2025

Keywords

Examples

			Fractions begin with 0, 1/2, 2/3, 1, 1, 1, 1, 5/4, 4/3, 13/10, 14/11, 4/3, ...
		

Crossrefs

Cf. A033150, A051903, A129132, A359071, A359072, A380265 (denominators).

Programs

  • Mathematica
    f[n_] := Max[FactorInteger[n][[;;, 2]]]; f[1] = 0; With[{m = 100}, Numerator[Accumulate[Array[f, m]] / Range[m]]]
  • PARI
    lista(nmax) = {my(s = 0); print1(0, ", "); for(n = 2, nmax, s += vecmax(factor(n)[,2]);  print1(numerator(s/n), ", "));}

Formula

a(n) = numerator((Sum_{k=1..n} A051903(k))/n).
a(n)/A380265(n) = A129132(n)/n.
Limit_{n->oo} a(n)/A380265(n) = c, where c is Niven's constant (A033150).
abs(a(n)/A380265(n) - c) <= 3*log_2(n)/sqrt(n).

A380265 a(n) is the denominator of the mean value of A051903(k) at the range k = 1..n.

Original entry on oeis.org

1, 2, 3, 1, 1, 1, 1, 4, 3, 10, 11, 3, 13, 7, 15, 16, 17, 9, 19, 20, 7, 22, 23, 24, 25, 13, 27, 28, 29, 2, 31, 32, 33, 34, 35, 9, 37, 19, 39, 20, 41, 21, 43, 44, 15, 23, 47, 16, 7, 50, 51, 26, 53, 27, 55, 28, 57, 29, 59, 12, 61, 62, 7, 64, 65, 66, 67, 34, 23, 5, 71
Offset: 1

Views

Author

Amiram Eldar, Jan 18 2025

Keywords

Crossrefs

Cf. A051903, A380264 (numerators).

Programs

  • Mathematica
    f[n_] := Max[FactorInteger[n][[;;, 2]]]; f[1] = 0; With[{m = 100}, Denominator[Accumulate[Array[f, m]] / Range[m]]]
  • PARI
    lista(nmax) = {my(s = 0); print1(1, ", "); for(n = 2, nmax, s += vecmax(factor(n)[,2]);  print1(denominator(s/n), ", "));}

Formula

a(n) = denominator((Sum_{k=1..n} A051903(k))/n).

A157754 a(1) = 0, a(n) = lcm(A051904(n), A051903(n)) for n >= 2.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2009

Keywords

Comments

a(n) for n >= 2 equals LCM of minimum and maximum exponents in the prime factorization of n.
a(n) for n >= 2 deviates from A072411, first different term is a(360), a(360) = 3, A072411(360) = 6.

Examples

			For n = 12 = 2^2 * 3^1 we have a(12) = lcm(2,1) = 2.
For n = 144 = 2^4 * 3^2 we have a(144) = lcm(4,2) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[LCM @@ {Min@ #, Max@ #} - Boole[n == 1] &@ FactorInteger[n][[All, -1]], {n, 100}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    a(n) = if(n == 1, 0, my(e = factor(n)[,2]); lcm(vecmin(e), vecmax(e))); \\ Amiram Eldar, Sep 11 2024

Formula

a(1) = 0, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = k, for p = primes (A000040), pq = product of two distinct primes (A006881), pq...z = product of k (k > 2) distinct primes p, q, ..., z (A120944), p^k = prime powers (A000961(n) for n > 1) k = natural numbers (A000027).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A033150. - Amiram Eldar, Sep 11 2024

A158378 a(1) = 0, a(n) = gcd(A051904(n), A051903(n)) for n >= 2.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Jaroslav Krizek, Mar 17 2009

Keywords

Comments

a(n) for n >= 2 equals GCD of minimum and maximum exponents in the prime factorization of n.
a(n) for n >= 2 it deviates from A052409(n), first different term is a(10800) = a(2^4*3^3*5^2), a(10800) = gcd(2,4) = 2, A052409(10800) = gcd(2,3,4) = 1.

Examples

			For n = 12 = 2^2 * 3^1 we have a(12) = gcd(2,1) = 1.
		

Crossrefs

Programs

  • Mathematica
    Table[GCD @@ {Min@ #, Max@ #} - Boole[n == 1] &@ FactorInteger[n][[All, -1]], {n, 100}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
    A051904(n) = if((1==n),0,vecmin(factor(n)[, 2]));
    A158378(n) = gcd(A051903(n),A051904(n)); \\ Antti Karttunen, Jul 12 2017
    
  • PARI
    a(n) = if(n == 1, 0, my(e = factor(n)[,2]); gcd(vecmin(e), vecmax(e))); \\ Amiram Eldar, Sep 11 2024

Formula

For n >= 2 holds: a(n)*A157754(n) = A051904(n)*A051903(n).
a(1) = 0, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = k, for p = primes (A000040), pq = product of two distinct primes (A006881), pq...z = product of k (k > 2) distinct primes p, q, ..., z (A120944), p^k = prime powers (A000961(n) for n > 1), k = natural numbers (A000027).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1. - Amiram Eldar, Sep 11 2024

A275803 a(n) = A051903(A275725(n)); maximal cycle sizes of finite permutations listed in the order A060117 / A060118.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 2, 3, 4, 3, 4, 2, 3, 3, 4, 2, 4, 2, 3, 2, 4, 3, 4, 2, 2, 2, 3, 2, 3, 3, 3, 4, 5, 4, 5, 3, 4, 4, 5, 3, 5, 3, 4, 3, 5, 4, 5, 2, 2, 3, 4, 3, 4, 3, 3, 4, 5, 4, 5, 2, 3, 4, 5, 3, 5, 2, 3, 3, 5, 4, 5, 2, 3, 3, 4, 2, 4, 2, 3, 4, 5, 3, 5, 3, 4, 4, 5, 3, 5, 2, 4, 3, 5, 3, 5, 2, 3, 2, 4, 3, 4, 2, 3, 3, 5, 4, 5, 2, 4, 3, 5, 3, 5, 3, 4, 3, 5, 4, 5, 2
Offset: 0

Views

Author

Antti Karttunen, Aug 10 2016

Keywords

Examples

			For n=27, which in factorial base (A007623) is "1011" and encodes (in A060118-order) permutation "23154" with one 3-cycle and one 2-cycle, the longest cycle has three elements, thus a(27) = 3.
		

Crossrefs

Cf. A261220 (gives the positions of 1 and 2's).
Differs from A060131 for the first time at n=27, where a(27) = 3, while A060131(27) = 6.

Programs

Formula

a(n) = A051903(A275725(n)).

A327295 Numbers k such that e(k) > 1 and k == e(k) (mod lambda(k)), where e(k) = A051903(k) is the maximal exponent in prime factorization of k.

Original entry on oeis.org

4, 12, 16, 48, 80, 112, 132, 208, 240, 1104, 1456, 1892, 2128, 4144, 5852, 12208, 17292, 18544, 21424, 25456, 30160, 45904, 78736, 97552, 106384, 138864, 153596, 154960, 160528, 289772, 311920, 321904, 399212, 430652, 545584, 750064, 770704, 979916, 1037040, 1058512
Offset: 1

Views

Author

Thomas Ordowski, Dec 05 2019

Keywords

Comments

The condition e(k) > 1 excludes primes and Carmichael numbers.
Numbers n such that e(k) > 1 and b^k == b^e(k) (mod k) for all b.
These are numbers k such that A276976(k) = e(k) > 1.
Are there infinitely many such numbers? Are all such numbers even?
A number k is a term if and only if k is e(k)-Knödel number with e(k) > 1. So they may have the name nonsquarefree e(k)-Knodel numbers k.
It seems that if k is in this sequence, then e(k) = A007814(k) and k/2^e(k) is squarefree.
Conjecture: there are no composite numbers m > 4 such that m == e(m) (mod phi(m)). By Lehmer's totient conjecture, there are no such squarefree numbers.
Problem: are there odd numbers n such that e(n) > 1 and n == e(n) (mod ord_{n}(2)), where ord_{n}(2) = A002326((n-1)/2)? These are odd numbers n such that 2^n == 2^e(n) (mod n) with e(n) > 1.
Numbers k for which A051903(k) > 1 and A219175(k) = A329885(k). - Antti Karttunen, Dec 11 2019

Examples

			The number 4 = 2^2 is a term, because e(4) = A051903(4) = 2 > 1 and 4 == 2 (mod lambda(4)), where lambda(4) = A002322(4) = 2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], (e = Max @@ Last /@ FactorInteger[#]) > 1 && Divisible[# -e, CarmichaelLambda[#]] &] (* Amiram Eldar, Dec 05 2019 *)
  • PARI
    isok(n) = ! issquarefree(n) && (Mod(n, lcm(znstar(n)[2])) == vecmax(factor(n)[, 2])); \\ Michel Marcus, Dec 05 2019

Extensions

More terms from Amiram Eldar, Dec 05 2019

A328384 If n is of the form p^p, a(n) = 0, otherwise a(n) gives the number of iterations of x -> A003415(x) needed to reach the first number different from n which is either a prime, or whose degree (A051903) differs from the degree of n. If the degree of the final number is <= that of n, then a(n) = -1 * iteration count.

Original entry on oeis.org

-1, -1, -1, 0, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -2, -1, -1, -1, -1, 2, 0, 1, -1, -1, -1, -1, 2, -1, 1, 3, -1, -3, 1, -1, -1, -1, -1, 1, -1, 1, -1, 3, -1, -2, 1, 1, -1, 1, 1, -1, -2, -1, -1, 2, -1, 3, -1, 2, 1, -1, -1, 1, 3, -1, -1, -1, -1, 2, -1, 1, 1, -1, -1, 5, -1, -1, -1, 2, -2, 1, 1, -1, -1, -1, 1, 1, -2, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 15 2019

Keywords

Comments

The records -1, 0, 1, 2, 3, 5, 8, 10, 11, 13, ... occur at n = 1, 4, 12, 26, 36, 80, 108, 4887, 18688, 22384, ...

Examples

			For n = 21 = 3*7, A051903(21) = 1, A003415(21) = 10 = 2*5, is of the same degree as A051903(10) = 1, but then A003415(10) = 7, which is a prime, having degree <= of the starting value (as we have A051903(7) <= A051903(21)), thus a(21) = -1 * 2 = -2.
For n = 33 = 3*11, A051903(33) = 1, A003415(33) = 14 = 2*7, is of the same degree, but on the second iteration, A003415(14) = 9 = 3^2, with A051903(9) = 2, which is larger than the initial degree, thus a(33) = +2.
		

Crossrefs

Cf. A328385 (the number found in the iteration).
Cf. A256750, A328248, A328383 for similar counts.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A051903(n) = if((n<=1),n-1,vecmax(factor(n)[, 2]));
    A328384(n) = { my(d=A051903(n), u=A003415(n), k=1); if(u==n,return(0)); while(u && (u!=n) && !isprime(u) && A051903(u)==d, k++; n = u; u = A003415(u)); if(A051903(u)<=d,-k,k); };

Formula

a(1) = -1 as 0 is here considered having a smaller degree than 1.
a(p) = -1 for all primes.
a(A051674(n)) = 0.
a(A157037(n)) = -1.
a(A328252(n)) = -1.
a(A328320(n)) = -1.

A329338 a(n) = {1{0}^(A268336(n)-1)}^(n-1){1}{0}^A051903(n): upper bound for A329126(n).

Original entry on oeis.org

1, 110, 101010, 111100, 100010001000100010, 1111110, 10000010000010000010000010000010000010, 11111111000, 1010101010101010100, 10101010101010101010, 100000000010000000001000000000100000000010000000001000000000100000000010000000001000000000100000000010
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2019

Keywords

Comments

This is the upper bound for A329126 as explained in the "FORMULA" there.
It is sharp for all n except 10, 14, 15, ...

Crossrefs

Cf. A329126, A329000, A329339 (this converted from binary to decimal), A268336, A051903.

Programs

  • PARI
    apply( {A329338(n)=my(k=lcm(lcm([p-1|p<-factor(n)[,1]]), n)/n); fromdigits(concat(vector(n, i, Vec(1, if(i1, vecmax(factor(n)[,2])+1)))))}, [1..16])

Formula

a(n) = A007088(A329339(n)), where A007088 = binary numbers and A329339(n) = 2^A051903(n)*(m^n-1)/(m-1) with m = 2^A268336(n).

A350076 Numbers k for which the maximal digit in their primorial base expansion (A328114) is greater than or equal to the maximal exponent in the prime factorization of k (A051903).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2022

Keywords

Comments

Numbers k for which the maximal prime exponent of A276086(k) is greater than or equivalent to the maximal prime exponent of k, A051903(k).

Crossrefs

Cf. A051903, A276086, A328114, A350070 (characteristic function), A350075 (complement).
Positions of nonnegative terms in A350074.
Cf. also A342006.

Programs

A351076 Numbers k such that the maximal exponent in the prime factorization of A327860(k) is greater than or equal to A051903(k), the maximal exponent in the prime factorization of k.

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2022

Keywords

Comments

Numbers k for which A328391(k) >= A051903(k).

Crossrefs

Cf. A003415, A276086, A051903, A327860, A328391, A351075 (complement), A351077 (the characteristic function).
Positions of nonnegative terms in A351074.
Cf. also A350076.

Programs

  • PARI
    A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
    A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
    isA351076(n) = (A051903(A327860(n)) >= A051903(n));
Previous Showing 21-30 of 386 results. Next