cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 102 results. Next

A062770 n/[largest power of squarefree kernel] equals 1; perfect powers of sqf-kernels (or sqf-numbers).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 100
Offset: 1

Views

Author

Labos Elemer, Jul 18 2001

Keywords

Comments

The sequence contains numbers m such that the exponents e are identical for all prime power factors p^e | m. It is clear from this alternate definition that m / K^E = 1 iff E is an integer. - Michael De Vlieger, Jun 24 2022

Examples

			Primes, squarefree numbers and perfect powers are here.
From _Michael De Vlieger_, Jun 24 2022 (Start):
144 cannot be in the sequence, since the exponents of its prime power factors differ. The squarefree kernel of 144 = 2^4 * 3^2 is 2*3 = 6. The largest power of 6 less than 144 is 36. 144/36 = 4, so it is not in the sequence.
216 is in the sequence because 216 = 2^3 * 3^3 is 2*3 = 6. But 216 = 6^3, hence 6^3 / 6^3 = 1. (End)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 2^16], Length@ Union@ FactorInteger[#][[All, -1]] == 1 &] (* Michael De Vlieger, Jun 24 2022 *)
  • PARI
    is(n)=ispower(n,,&n); issquarefree(n) && n>1 \\ Charles R Greathouse IV, Sep 18 2015
    
  • PARI
    is(n)=#Set(factor(n)[,2])==1 \\ Charles R Greathouse IV, Sep 18 2015
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A062770(n):
        def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        def f(x): return n-2+x+(y:=x.bit_length())-sum(g(integer_nthroot(x,k)[0]) for k in range(1,y))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024

Formula

A062760(a(n)) = 1, i.e., a(n)/(A007947(a(n))^A051904(a(n))) = a(n)/A062759(a(n)) = 1.
a(n) = A072774(n+1). - Chai Wah Wu, Aug 19 2024

Extensions

Offset corrected by Charles R Greathouse IV, Sep 18 2015

A362974 Decimal expansion of Product_{p prime} (1 + 1/p^(4/3) + 1/p^(5/3)).

Original entry on oeis.org

4, 6, 5, 9, 2, 6, 6, 1, 2, 2, 5, 0, 0, 6, 5, 6, 9, 4, 1, 2, 7, 7, 4, 3, 1, 1, 0, 8, 9, 1, 3, 6, 2, 5, 8, 6, 2, 1, 3, 0, 5, 4, 3, 3, 6, 7, 2, 8, 3, 2, 5, 6, 5, 3, 8, 4, 7, 5, 7, 6, 9, 2, 4, 0, 1, 5, 3, 0, 3, 4, 1, 8, 0, 8, 6, 5, 7, 3, 5, 2, 3, 8, 7, 2, 1, 8, 0, 7, 7, 5, 8, 9, 0, 2, 6, 8, 4, 6, 2, 3, 4, 9, 0, 9, 7
Offset: 1

Views

Author

Amiram Eldar, May 11 2023

Keywords

Comments

The coefficient c_0 of the leading term in the asymptotic formula for the number of cubefull numbers (A036966) not exceeding x, N(x) = c_0 * x^(1/3) + c_1 * x^(1/4) + c_2 * x^(1/5) + o(x^(1/8)) (Bateman and Grosswald, 1958; Finch, 2003).

Examples

			4.65926612250065694127743110891362586213054336728325...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.6.1, pp. 113-115.

Crossrefs

Cf. A036966, A090699 (analogous constant for powerful numbers), A244000, A337736, A362973, A362975 (c_1), A362976 (c_2).
Cf. A051904.

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{0, 0, 0, -1, -1}, {0, 0, 0, 4, 5}, m]; RealDigits[(1 + 1/2^(4/3) + 1/2^(5/3)) * (1 + 1/3^(4/3) + 1/3^(5/3)) * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n/3] - 1/2^(n/3) - 1/3^(n/3))/n, {n, 4, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
  • PARI
    prodeulerrat(1 + 1/p^4 + 1/p^5, 1/3)

Formula

Equals 1 + lim_{m->oo} (1/m) Sum_{k=1..m} A337736(k).

A367580 Multiset multiplicity kernel (MMK) of n. Product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 4, 7, 2, 3, 4, 11, 6, 13, 4, 9, 2, 17, 6, 19, 10, 9, 4, 23, 6, 5, 4, 3, 14, 29, 8, 31, 2, 9, 4, 25, 4, 37, 4, 9, 10, 41, 8, 43, 22, 15, 4, 47, 6, 7, 10, 9, 26, 53, 6, 25, 14, 9, 4, 59, 18, 61, 4, 21, 2, 25, 8, 67, 34, 9, 8, 71, 6, 73, 4, 15, 38
Offset: 1

Views

Author

Gus Wiseman, Nov 26 2023

Keywords

Comments

As an operation on multisets, this is represented by A367579.

Examples

			90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so a(90) = 12.
		

Crossrefs

Positions of 2's are A000079 without 1.
Positions of 3's are A000244 without 1.
Positions of primes (including 1) are A000961.
Positions of prime(k) are prime powers prime(k)^i, rows of A051128.
Depends only on rootless base A052410, see A007916.
Positions of prime powers are A072774.
Positions of squarefree numbers are A130091.
Agrees with A181819 at positions A367683, counted by A367682.
Rows of A367579 have this rank, sum A367581, max A367583, min A055396.
Positions of first appearances are A367584, sorted A367585.
Positions of powers of 2 are A367586.
Divides n at positions A367685, counted by A367684.
The opposite version (cokernel) is A367859.
A007947 gives squarefree kernel.
A027746 lists prime factors, length A001222, indices A112798.
A027748 lists distinct prime factors, length A001221, indices A304038.
A071625 counts distinct prime exponents.
A124010 gives multiset of multiplicities (prime signature), sorted A118914.

Programs

  • Mathematica
    mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
    Table[Times@@mmk[Join@@ConstantArray@@@FactorInteger[n]], {n,100}]

Formula

a(n^k) = a(n) for all positive integers n and k.
A001221(a(n)) = A071625(n).
A001222(a(n)) = A001221(n).
If n is squarefree, a(n) = A020639(n)^A001222(n).
A056239(a(n)) = A367581(n).

A367579 Irregular triangle read by rows where row n is the multiset multiplicity kernel (MMK) of the multiset of prime indices of n.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 1, 5, 1, 2, 6, 1, 1, 2, 2, 1, 7, 1, 2, 8, 1, 3, 2, 2, 1, 1, 9, 1, 2, 3, 1, 1, 2, 1, 4, 10, 1, 1, 1, 11, 1, 2, 2, 1, 1, 3, 3, 1, 1, 12, 1, 1, 2, 2, 1, 3, 13, 1, 1, 1, 14, 1, 5, 2, 3, 1, 1, 15, 1, 2, 4, 1, 3, 2, 2, 1, 6, 16, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2023

Keywords

Comments

Row n = 1 is empty.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}.
Note: I chose the word 'kernel' because, as with A007947 and A304038, MMK(m) is constructed using the same underlying elements as m and has length equal to the number of distinct elements of m. However, it is not necessarily a submultiset of m.

Examples

			The first 45 rows:
     1: {}      16: {1}       31: {11}
     2: {1}     17: {7}       32: {1}
     3: {2}     18: {1,2}     33: {2,2}
     4: {1}     19: {8}       34: {1,1}
     5: {3}     20: {1,3}     35: {3,3}
     6: {1,1}   21: {2,2}     36: {1,1}
     7: {4}     22: {1,1}     37: {12}
     8: {1}     23: {9}       38: {1,1}
     9: {2}     24: {1,2}     39: {2,2}
    10: {1,1}   25: {3}       40: {1,3}
    11: {5}     26: {1,1}     41: {13}
    12: {1,2}   27: {2}       42: {1,1,1}
    13: {6}     28: {1,4}     43: {14}
    14: {1,1}   29: {10}      44: {1,5}
    15: {2,2}   30: {1,1,1}   45: {2,3}
		

Crossrefs

Indices of empty and singleton rows are A000961.
Row lengths are A001221.
Depends only on rootless base A052410, see A007916.
Row minima are A055396.
Rows have A071625 distinct elements.
Indices of constant rows are A072774.
Indices of strict rows are A130091.
Rows have Heinz numbers A367580.
Row sums are A367581.
Row maxima are A367583, opposite A367587.
Index of first row with Heinz number n is A367584.
Sorted row indices of first appearances are A367585.
Indices of rows of the form {1,1,...} are A367586.
Agrees with sorted prime signature at A367683, counted by A367682.
A submultiset of prime indices at A367685, counted by A367684.
A007947 gives squarefree kernel.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124010 lists prime multiplicities (prime signature), sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, reversed A353742.
A304038 lists distinct prime indices, length A001221, sum A066328.
A367582 counts partitions by sum of multiset multiplicity kernel.

Programs

  • Mathematica
    mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
    Table[mmk[PrimePi/@Join@@ConstantArray@@@If[n==1, {},FactorInteger[n]]], {n,100}]

Formula

For all positive integers n and k, row n^k is the same as row n.

A381440 Irregular triangle read by rows where row k is the Look-and-Say partition of the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 28 2025

Keywords

Comments

Row lengths are A066328.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)).
The conjugate of a Look-and-Say partition is a section-sum partition; see A381431, union A381432, count A239455.

Examples

			The prime indices of 24 are (2,1,1,1), with Look-and-Say partition (3,1,1), so row 24 is (3,1,1).
The prime indices of 36 are (2,2,1,1), with Look-and-Say partition (2,2,2), so row 36 is (2,2,2).
Triangle begins:
   1: (empty)
   2: 1
   3: 1 1
   4: 2
   5: 1 1 1
   6: 1 1 1
   7: 1 1 1 1
   8: 3
   9: 2 2
  10: 1 1 1 1
  11: 1 1 1 1 1
  12: 2 1 1
  13: 1 1 1 1 1 1
  14: 1 1 1 1 1
  15: 1 1 1 1 1
  16: 4
  17: 1 1 1 1 1 1 1
  18: 2 2 1
  19: 1 1 1 1 1 1 1 1
		

Crossrefs

Heinz numbers are A048767 (union A351294, complement A351295, fixed A048768, A217605).
First part in each row is A051903, conjugate A066328.
Last part in each row is A051904, conjugate A381437 (counted by A381438).
Row sums are A056239.
Row lengths are A066328.
Partitions of this type are counted by A239455, complement A351293.
The conjugate is A381436, Heinz numbers A381431 (union A381432, complement A381433).
Rows appearing only once have Heinz numbers A381540, more than once A381541.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    Table[Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>ConstantArray[k,PrimePi[p]]]]//Reverse,{n,30}]

A353931 Least run-sum of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 2, 3, 1, 4, 3, 4, 1, 5, 2, 6, 1, 2, 4, 7, 1, 8, 2, 2, 1, 9, 2, 6, 1, 6, 2, 10, 1, 11, 5, 2, 1, 3, 2, 12, 1, 2, 3, 13, 1, 14, 2, 3, 1, 15, 2, 8, 1, 2, 2, 16, 1, 3, 3, 2, 1, 17, 2, 18, 1, 4, 6, 3, 1, 19, 2, 2, 1, 20, 3, 21, 1, 2, 2, 4, 1, 22, 3, 8, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 07 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The prime indices of 72 are {1,1,1,2,2}, with run-sums {3,4}, so a(72) = 3.
		

Crossrefs

Positions of first appearances are A008578.
For run-lengths instead of run-sums we have A051904, greatest A051903.
For run-sums and binary expansion we have A144790, greatest A038374.
For run-lengths and binary expansion we have A175597, greatest A043276.
Distinct run-sums are counted by A353835, weak A353861.
The greatest run-sum is given by A353862.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A304442 counts partitions with all equal run-sums, compositions A353851.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run sums, nonprime A353834.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353840-A353846 pertain to partition run-sum trajectory.

Programs

  • Mathematica
    Table[Min@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k],{n,100}]

A367581 Sum of the multiset multiplicity kernel (in which each multiplicity becomes the least element of that multiplicity) of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 2, 5, 3, 6, 2, 4, 1, 7, 3, 8, 4, 4, 2, 9, 3, 3, 2, 2, 5, 10, 3, 11, 1, 4, 2, 6, 2, 12, 2, 4, 4, 13, 3, 14, 6, 5, 2, 15, 3, 4, 4, 4, 7, 16, 3, 6, 5, 4, 2, 17, 5, 18, 2, 6, 1, 6, 3, 19, 8, 4, 3, 20, 3, 21, 2, 5, 9, 8, 3, 22, 4, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}. As an operation on multisets, MMK is represented by A367579, and as an operation on their Heinz numbers, it is represented by A367580.

Examples

			The multiset multiplicity kernel of {1,2,2,3} is {1,1,2}, so a(90) = 4.
		

Crossrefs

Positions of 1's are A000079 without 1.
Positions of first appearances are A008578.
Depends only on rootless base A052410, see A007916, A052409.
The triangle A367579 has these as row sums, ranks A367580.
The triangle for this rank statistic is A367582.
For maximum instead of sum we have A367583, opposite A367587.
A007947 gives squarefree kernel.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, reverse A353742.
A304038 lists distinct prime indices, length A001221, sum A066328.

Programs

  • Mathematica
    mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
    Table[Total[mmk[PrimePi/@Join@@ConstantArray@@@FactorInteger[n]]], {n,100}]

Formula

a(n^k) = a(n) for all positive integers n and k.
a(n) = A056239(A367580(n)).
If n is squarefree, a(n) = A055396(n)*A001222(n).

A381437 Last part of the section-sum partition of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 4, 1, 2, 4, 5, 1, 6, 5, 5, 1, 7, 2, 8, 1, 6, 6, 9, 1, 3, 7, 2, 1, 10, 6, 11, 1, 7, 8, 7, 3, 12, 9, 8, 1, 13, 7, 14, 1, 2, 10, 15, 1, 4, 3, 9, 1, 16, 2, 8, 1, 10, 11, 17, 1, 18, 12, 2, 1, 9, 8, 19, 1, 11, 8, 20, 1, 21, 13, 3, 1, 9, 9, 22, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 28 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The prime indices of 972 are {1,1,2,2,2,2,2}, with section-sum partition (3,3,2,2,2), so a(972) = 2.
		

Crossrefs

Positions of first appearances are A008578.
The length of this partition is A051903.
The conjugate version is A051904.
For first instead of last part we get A066328.
These partitions are counted by A239455, complement A351293.
Positions of 1 are A360013, complement A381439.
This is the least prime index of A381431 (see A381432, A381433, A381434, A381435).
This is the last part of row n of A381436 (see A381440, A048767, A351294, A351295).
Counting partitions by this statistic gives A381438.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Table[If[n==1,0,Last[egs[prix[n]]]],{n,100}]

Formula

a(n) = A055396(A381431(n)).

A367584 Least number whose multiset multiplicity kernel (in which each prime exponent becomes the least prime factor with that exponent) is n. First position of n in A367580.

Original entry on oeis.org

1, 2, 3, 6, 5, 12, 7, 30, 15, 20, 11, 90, 13, 28, 45, 210, 17, 60, 19, 150, 63, 44, 23, 630, 35, 52, 105, 252, 29, 360, 31, 2310, 99, 68, 175, 2100, 37, 76, 117, 1050, 41, 504, 43, 396, 525, 92, 47, 6930, 77, 140, 153, 468, 53, 420, 275, 1470, 171, 116, 59
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2023

Keywords

Comments

We define the multiset multiplicity kernel (MMK) of a positive integer n to be the product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n. For example, 90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so MMK(90) = 12. As an operation on multisets, MMK is represented by the triangle A367579, and as an operation on their ranks it is represented by A367580.

Examples

			The least number with multiset multiplicity kernel 9 is 15, so a(9) = 15.
The terms together with their prime indices begin:
   1 ->  1: {}
   2 ->  2: {1}
   3 ->  3: {2}
   4 ->  6: {1,2}
   5 ->  5: {3}
   6 -> 12: {1,1,2}
   7 ->  7: {4}
   8 -> 30: {1,2,3}
   9 -> 15: {2,3}
  10 -> 20: {1,1,3}
  11 -> 11: {5}
  12 -> 90: {1,2,2,3}
  13 -> 13: {6}
  14 -> 28: {1,1,4}
  15 -> 45: {2,2,3}
  16 ->210: {1,2,3,4}
		

Crossrefs

Positions of primes are A000040.
Positions of squarefree numbers are A000961.
All terms are rootless A007916.
Contains no nonprime prime powers A246547.
The MMK triangle is A367579, sum A367581, min A055396, max A367583.
Positions of first appearances in A367580.
The sorted version is A367585.
The complement is A367768.
A007947 gives squarefree kernel.
A027746 lists prime factors, length A001222, indices A112798.
A027748 lists distinct prime factors, length A001221, indices A304038.
A071625 counts distinct prime exponents.
A124010 gives prime signature, sorted A118914.

Programs

  • Mathematica
    nn=1000;
    mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
    spnm[y_]:=Max@@NestWhile[Most, Sort[y], Union[#]!=Range[Max@@#]&];
    qq=Table[Times@@mmk[Join@@ConstantArray@@@FactorInteger[n]], {n,nn}];
    Table[Position[qq,i][[1,1]], {i,spnm[qq]}]

Formula

a(p) = p for all primes p.

A367583 Greatest element in row n of A367579 (multiset multiplicity kernel).

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 2, 6, 1, 2, 1, 7, 2, 8, 3, 2, 1, 9, 2, 3, 1, 2, 4, 10, 1, 11, 1, 2, 1, 3, 1, 12, 1, 2, 3, 13, 1, 14, 5, 3, 1, 15, 2, 4, 3, 2, 6, 16, 2, 3, 4, 2, 1, 17, 2, 18, 1, 4, 1, 3, 1, 19, 7, 2, 1, 20, 2, 21, 1, 3, 8, 4, 1, 22, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}.

Examples

			For 450 = 2^1 * 3^2 * 5^2, we have MMK({1,2,2,3,3}) = {1,2,2} so a(450) = 2.
		

Crossrefs

Positions of first appearances are A008578.
Depends only on rootless base A052410, see A007916, A052409.
For minimum instead of maximum element we have A055396.
Row maxima of A367579.
Greatest prime index of A367580.
Positions of 1's are A367586 (powers of even squarefree numbers).
The opposite version is A367587.
A007947 gives squarefree kernel.
A072774 lists powers of squarefree numbers.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, reverse A353742.
A304038 lists distinct prime indices, length A001221, sum A066328.
A363486 gives least prime index of greatest exponent.
A363487 gives greatest prime index of greatest exponent.
A364191 gives least prime index of least exponent.
A364192 gives greatest prime index of least exponent.

Programs

  • Mathematica
    mmk[q_]:=With[{mts=Length/@Split[q]},Sort[Table[Min@@Select[q,Count[q,#]==i&],{i,mts}]]];
    Table[If[n==1,0,Max@@mmk[PrimePi/@Join@@ConstantArray@@@If[n==1,{},FactorInteger[n]]]],{n,1,100}]

Formula

a(n) = A061395(A367580(n)).
a(n^k) = a(n) for all positive integers n and k.
If n is a power of a squarefree number, a(n) = A055396(n).
Previous Showing 21-30 of 102 results. Next