A367580 Multiset multiplicity kernel (MMK) of n. Product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n.
1, 2, 3, 2, 5, 4, 7, 2, 3, 4, 11, 6, 13, 4, 9, 2, 17, 6, 19, 10, 9, 4, 23, 6, 5, 4, 3, 14, 29, 8, 31, 2, 9, 4, 25, 4, 37, 4, 9, 10, 41, 8, 43, 22, 15, 4, 47, 6, 7, 10, 9, 26, 53, 6, 25, 14, 9, 4, 59, 18, 61, 4, 21, 2, 25, 8, 67, 34, 9, 8, 71, 6, 73, 4, 15, 38
Offset: 1
Keywords
Examples
90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so a(90) = 12.
Crossrefs
Positions of 2's are A000079 without 1.
Positions of 3's are A000244 without 1.
Positions of primes (including 1) are A000961.
Positions of prime(k) are prime powers prime(k)^i, rows of A051128.
Positions of prime powers are A072774.
Positions of squarefree numbers are A130091.
Positions of powers of 2 are A367586.
The opposite version (cokernel) is A367859.
A007947 gives squarefree kernel.
A071625 counts distinct prime exponents.
Programs
-
Mathematica
mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]]; Table[Times@@mmk[Join@@ConstantArray@@@FactorInteger[n]], {n,100}]
Comments