A076681
Numbers k such that 5*k! + 1 is prime.
Original entry on oeis.org
2, 3, 5, 10, 11, 12, 17, 34, 74, 136, 155, 259, 271, 290, 352, 479, 494, 677, 776, 862, 921, 932, 2211, 3927, 4688, 12567
Offset: 1
Phillip L. Poplin (plpoplin(AT)bellsouth.net), Oct 25 2002
k = 3 is here because 5*3! + 1 = 31 is prime.
A062698
Primes of form 2*k! + 1.
Original entry on oeis.org
3, 5, 13, 241, 958003201, 12804747411456001, 20666295932772289859333302675046400000001, 3102237506574764560448486032938606422126519440033972224000000000001, 8549766568120051128596027506778799299380687576733627449344000000000001
Offset: 1
-
lst={};Do[p=2*n!+1;If[PrimeQ[p],AppendTo[lst,p]],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 28 2009 *)
Select[2*Range[200]!+1,PrimeQ] (* Harvey P. Dale, Oct 26 2013 *)
-
for(n=1,55, if(isprime(2*n!+1),print(2*n!+1)))
-
{ n=0; f=1; for (m=1, 10^5, f*=m; if(isprime(a=2*f + 1), write("b062698.txt", n++, " ", a); if (n==12, break)) ) } \\ Harry J. Smith, Aug 09 2009
A051800
Numbers k such that 1 plus twice the product of the first k primes is also a prime.
Original entry on oeis.org
1, 2, 3, 4, 5, 11, 18, 23, 26, 30, 80, 120, 148, 220, 395, 776, 884, 977, 3535, 3927
Offset: 1
5 is in the sequence because 2*(2*3*5*7*11) + 1 = 4621 is prime.
-
Position[2#+1&/@FoldList[Times,Prime[Range[800]]],?PrimeQ]//Flatten (* _Harvey P. Dale, Oct 09 2018 *)
-
isok(k) = isprime(1+2*prod(j=1, k, prime(j))); \\ Michel Marcus, May 28 2018
-
from sympy import isprime, nextprime
def afind(limit):
p, primorialk = 2, 2
for k in range(1, limit+1):
if isprime(2*primorialk + 1):
print(k, end=", ")
p = nextprime(p)
primorialk *= p
afind(400) # Michael S. Branicky, Dec 24 2021
Comments