cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A236437 Primes which occur in their proper place in A236174.

Original entry on oeis.org

2, 263, 269, 347, 397, 431, 461, 479, 499, 569, 599, 607, 677, 683, 719, 769, 797, 821, 929, 941, 1019, 1031, 1049, 1051, 1061, 1069, 1103, 1181, 1223, 1229, 1237, 1297, 1307, 1367, 1399, 1409, 1439, 1453, 1487, 1489, 1523, 1553, 1559, 1571, 1619, 1637, 1733, 1759, 1811, 1823, 1949, 1973, 1997
Offset: 1

Views

Author

N. J. A. Sloane, Jan 25 2014

Keywords

Comments

Primes p such that A236174(k) = prime(k) for some k. The values of k are (essentially) given in A235377.
Same as A052033 if the initial 2 is omitted.

Examples

			263 is the 56th prime and is also the 56th term in A236174.
		

Crossrefs

Programs

  • Python
    from sympy import prime, isprime
    def A236174(n):
        p = prime(n)
        for b in range(2,11):
            x, y, z = p, 0, 1
            while x >= b:
                x, r = divmod(x,b)
                y += r*z
                z *= 10
            y += x*z
            if isprime(y):
                return y
    A236437_list = [prime(n) for n in range(1,10**6) if A236174(n) == prime(n)]
    # Chai Wah Wu, Jan 03 2015

A235377 Positions of 10s in A235354.

Original entry on oeis.org

56, 57, 69, 78, 83, 89, 92, 95, 104, 109, 111, 123, 124, 128, 136, 139, 142, 158, 160, 171, 173, 176, 177, 178, 180, 185, 194, 200, 201, 203, 211, 214, 219, 222, 223, 228, 231, 236, 237, 241, 245, 246, 248, 256, 259, 270, 274, 280, 281, 296, 298, 302, 307, 314
Offset: 1

Views

Author

Keywords

Comments

If prime(a(n)) is written in base k>=2, and the k-representation is read in decimal, then all such numbers, for k = 2,3,...,9, are composite.

Crossrefs

Programs

  • PARI
    isok(n) = {my(p = prime(n)); for (b = 2, 9, if (isprime(subst(Pol(digits(p, b)), x, 10)), return(0));); return (1);} \\ Michel Marcus, Jan 18 2014

A052029 Primes base 10 that remain primes in five bases b, 2<=b<=10, expansions interpreted as decimal numbers.

Original entry on oeis.org

7, 43, 71, 163, 199, 283, 307, 367, 463, 571, 757, 1033, 1163, 1627, 1873, 2683, 3041, 3691, 3967, 4483, 4651, 4729, 4951, 4973, 5407, 6073, 6961, 7351, 7537, 8053, 8599, 9103, 9817, 10321, 10831, 11251, 11383, 11743, 12433, 12853, 13219, 14419, 14479
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range@ 1800], Count[PrimeQ /@ Table[FromDigits[IntegerDigits[#, i]], {i, 2, 10}], True] == 5 &] (* Michael De Vlieger, Mar 20 2015, after Harvey P. Dale at A052032 *)
  • PARI
    lista(nn, nb=5) = {forprime(p=2, nn, if (sum(b=2, 10, isprime(subst(Pol(digits(p, b)), x, 10))) == nb, print1(p, ", ")););} \\ Michel Marcus, Mar 21 2015

A052030 Primes base 10 that remain primes in four bases b, 2<=b<=10, expansions interpreted as decimal numbers.

Original entry on oeis.org

19, 23, 37, 67, 79, 103, 127, 191, 193, 211, 229, 277, 311, 313, 337, 379, 409, 433, 443, 577, 613, 619, 631, 643, 647, 653, 787, 857, 883, 907, 919, 947, 997, 1021, 1039, 1087, 1097, 1123, 1171, 1279, 1423, 1429, 1447, 1459, 1471, 1567, 1597, 1669, 1693
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Examples

			19 is 103_4, 31_6, 23_8 and 19_10.
		

Crossrefs

Programs

A052031 Primes base 10 that remain primes in three bases b, 2<=b<=10, expansions interpreted as decimal numbers.

Original entry on oeis.org

11, 13, 17, 29, 31, 47, 59, 61, 83, 89, 97, 101, 109, 149, 151, 179, 181, 197, 227, 241, 251, 281, 331, 349, 353, 359, 373, 383, 419, 421, 439, 449, 457, 487, 503, 541, 547, 563, 587, 601, 617, 659, 673, 709, 727, 733, 743, 751, 773, 811, 823, 877, 953, 967
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Examples

			11 is 23_4, 13_8 and 11_10.
		

Crossrefs

Programs

A256351 Composites in base 10 that remain composite in exactly seven bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

Original entry on oeis.org

8, 9, 15, 16, 21, 22, 25, 28, 34, 75, 87, 91, 93, 94, 106, 111, 123, 141, 143, 145, 147, 155, 172, 201, 205, 214, 217, 237, 255, 298, 304, 305, 363, 371, 376, 377, 385, 388, 395, 403, 411, 423, 428, 442, 458, 466, 471, 473, 483, 495, 501, 505, 507, 531, 533
Offset: 1

Views

Author

Sebastian Petzelberger, Mar 25 2015

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(b,x) local L,i;
    L:= convert(x,base,b);
    isprime(add(10^(i-1)*L[i],i=1..nops(L)))
    end proc:
    select(t -> not isprime(t) and nops(select(f,[$2..9],t))=2, [$1..1000]); # Robert Israel, Mar 26 2015
  • Mathematica
    fQ[n_] := CompositeQ@ n && Count[ CompositeQ[ FromDigits[ IntegerDigits[n, #]] & /@ Range[2, 9]], True] == 6; Select[ Range@ 500, fQ] (* Robert G. Wilson v, Mar 26 2015 *)

A256352 Composites in base 10 that remain composite in exactly six bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

Original entry on oeis.org

10, 33, 39, 133, 183, 185, 203, 235, 291, 295, 303, 325, 343, 381, 391, 451, 475, 517, 535, 539, 561, 583, 655, 703, 723, 753, 775, 791, 799, 841, 867, 889, 895, 943, 1003, 1023, 1083, 1099, 1121, 1159, 1165, 1173, 1186, 1198, 1207, 1219, 1263, 1333, 1366
Offset: 1

Views

Author

Sebastian Petzelberger, Mar 25 2015

Keywords

Crossrefs

A256353 Composites in base 10 that remain composite in exactly five bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

Original entry on oeis.org

55, 169, 247, 253, 323, 493, 529, 556, 671, 1027, 1111, 1243, 1261, 1339, 1375, 1711, 1751, 1803, 2185, 2413, 2431, 2881, 3193, 4381, 4417, 4843, 5029, 5203, 5251, 6631, 7093, 7999, 8515, 8653, 9271, 9307, 9481, 9523, 9593, 9727, 9745, 9937, 9955, 10393, 10555
Offset: 1

Views

Author

Sebastian Petzelberger, Mar 25 2015

Keywords

Comments

Less remaining is not possible for even numbers.

Crossrefs

A256354 Composites in base 10 that remain composite in exactly four bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

Original entry on oeis.org

115, 2563, 3523, 5071, 9193, 10873, 12223, 12811, 13231, 15775, 19111, 20203, 23089, 25831, 27007, 28171, 34189, 39859, 40033, 43361, 55033, 57871, 58813, 74371, 84253, 89377, 93043, 95833, 101683, 117001, 125359, 126673, 128953, 131029, 134527, 137467, 138193
Offset: 1

Views

Author

Sebastian Petzelberger, Mar 25 2015

Keywords

Crossrefs

A256355 Composites in base 10 that remain composite in exactly three bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

Original entry on oeis.org

11233, 42241, 98281, 131239, 161953, 315151, 358135, 606553, 692263, 785851, 1114081, 1130419, 1525777, 1906363, 3369313, 3403081, 3880873, 5616721, 6036103, 6947611, 7253191, 7516783, 7886593, 8799127, 8811223, 9108289, 9113203, 9195313, 9450361, 9600769
Offset: 1

Views

Author

Sebastian Petzelberger, Mar 25 2015

Keywords

Examples

			11233 = 324413_5 and 324413_10 is composite; 11233 = 44515_7 and 44515_10 is composite; 11233_10 itself is composite. Interpreted in base 2, 3, 4, 6, 8, and 9 the result is prime. Hence 11233 is in this sequence.
		

Crossrefs

Programs

Previous Showing 11-20 of 21 results. Next