cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A222466 Decimal expansion of the limit of the continued fraction 1/(1+2/(2+2/(3+2/(4+... in terms of Bessel functions.

Original entry on oeis.org

5, 6, 3, 1, 7, 8, 6, 1, 9, 8, 1, 1, 7, 1, 1, 3, 8, 5, 4, 2, 5, 7, 5, 2, 9, 0, 3, 7, 0, 3, 5, 6, 3, 5, 5, 3, 2, 7, 6, 0, 5, 2, 2, 5, 4, 8, 6, 4, 0, 4, 3, 4, 9, 2, 4, 1, 2, 9, 8, 4, 8, 2, 1, 9, 0, 9, 7, 7, 6, 9, 0, 4, 4, 0, 7, 6, 2, 4, 6, 0, 3, 0, 2, 5, 5, 7, 2, 4, 8, 9, 1, 9, 5, 1, 8, 6, 1, 1, 3, 7, 5, 8, 5, 3, 8
Offset: 0

Views

Author

Wolfdieter Lang, Mar 07 2013

Keywords

Comments

The continued fraction (0 + K_{k=1..oo} (2/k))/2 = 1/(1+2/(2+2/(3+2/(4+ ... converges, and its limit is given in the formula section in terms of Bessel functions.
In general, the continued fraction 0 + K_{k=1..oo} (x/k) = x/(1+x/(2+x/(3+... has n-th approximation x*Phat(n,x)/ Q(n,x), with the row polynomials Phat of A221913 and Q of A084950. These polynomials are written in terms of Bessel functions. Divided by n! = Gamma(n+1) one knows the limit for n -> infinity for these two polynomial systems. This results in the given formula 0 + K_{k=1..oo} (x/k) = sqrt(x)*BesselI(1,2*sqrt(x))/BesselI(0,2*sqrt(x)).
For x=1 see for the limit of the continued fraction A052119 and for the n-th approximation A001053(n+1)/A001040(n+1).

Examples

			0.5631786198117113854257529037035635...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselI[1, 2*Sqrt[2]]/(Sqrt[2]*BesselI[0, 2*Sqrt[2]]), 10, 50][[1]] (* G. C. Greubel, Aug 16 2017 *)
  • PARI
    default(realprecision, 120);
    sqrt(2)*besseli(1,2*sqrt(2))/(2*besseli(0,2*sqrt(2))) \\ Rick L. Shepherd, Jan 18 2014

Formula

(0 + K_{k=1..oo} (2/k))/2 = 1/(1+2/(2+2/(3+2/(4+ ... =
sqrt(2)*BesselI(1,2*sqrt(2))/(2*BesselI(0,2*sqrt(2)))

Extensions

Offset corrected and terms added by Rick L. Shepherd, Jan 18 2014

A309930 Decimal expansion of the constant whose continued fraction representation is the cubes [0; 1, 8, 27, 64, ...], A000578.

Original entry on oeis.org

8, 8, 9, 3, 4, 4, 0, 0, 0, 0, 3, 2, 7, 6, 2, 6, 9, 3, 6, 0, 5, 4, 9, 4, 7, 0, 6, 3, 2, 1, 2, 2, 1, 9, 8, 1, 0, 3, 5, 4, 2, 9, 2, 0, 8, 8, 6, 3, 6, 8, 0, 9, 5, 4, 5, 4, 8, 8, 8, 0, 9, 1, 4, 4, 4, 3, 0, 9, 6, 7, 6, 4, 1, 7, 6, 8, 1, 4, 9, 8, 0, 5, 6, 1, 8, 3, 4
Offset: 0

Views

Author

Daniel Hoyt, Nov 11 2019

Keywords

Examples

			0.8893440000327626936054947063212219810354292088...
		

Crossrefs

Programs

  • Mathematica
    N[FromContinuedFraction[Table[k^3, {k, 0, 1000}]], 120] (* Vaclav Kotesovec, Nov 20 2019 *)
  • PARI
    dec_exp(v)= w=contfracpnqn(v); w[1, 1]/w[2, 1]+0.
    dec_exp(vector(2000, i, (i-1)^3)) \\ Michel Marcus, Nov 19 2019; after A073824
  • Python
    import decimal
    from decimal import Decimal as D
    def constant_from_cofr(clist):
        hn0, kn0 = 0, 1
        hn1, kn1 = 1, 0
        for n in clist:
            hn2 = (n * hn1) + hn0
            kn2 = (n * kn1) + kn0
            hn0, kn0 = hn1, kn1
            hn1, kn1 = hn2, kn2
        return D(hn2)/D(kn2)
    if _name_ == "_main_":
        prec = 200
        decimal.getcontext().prec = prec
        glist = [x**3 for x in range(500)]
        print(', '.join(str(x) for x in str(constant_from_cofr(glist))[2:]))
    

A214070 Decimal expansion of the number whose continued fraction is 1, 2, 4, 8, 16, ...

Original entry on oeis.org

1, 4, 4, 5, 9, 3, 4, 6, 4, 0, 5, 1, 2, 2, 0, 2, 6, 6, 8, 1, 1, 9, 5, 5, 4, 3, 4, 0, 6, 8, 2, 6, 1, 7, 6, 8, 4, 2, 7, 0, 4, 0, 8, 8, 4, 5, 2, 0, 3, 4, 3, 8, 5, 0, 7, 9, 0, 3, 2, 6, 3, 5, 6, 0, 5, 0, 0, 6, 6, 1, 9, 0, 0, 6, 9, 1, 6, 2, 3, 2, 7, 7, 8, 9, 9, 7, 7, 7, 1, 6, 1, 8, 9, 0, 3, 9, 9, 2, 1, 4, 6, 2, 0, 4, 2
Offset: 1

Views

Author

Robert G. Wilson v, Aug 06 2012

Keywords

Comments

Essentially the same as A096641. - R. J. Mathar, Aug 10 2012

Examples

			1.4459346405122026681195543406826176842704088452034385079032635605006619006916...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ FromContinuedFraction[{1, 2^Range@ 19}], 10, 111][[1]]

Formula

From Amiram Eldar, Feb 08 2022: (Start)
Equals A096641 + 1.
Equals 1/A275614. (End)

A222471 Decimal expansion of the negative of the limit of the continued fraction 1/(1-2/(2-2/(3-2/(4-... in terms of Bessel functions.

Original entry on oeis.org

1, 4, 3, 9, 7, 4, 9, 3, 2, 1, 8, 7, 0, 2, 3, 2, 8, 0, 5, 8, 9, 5, 7, 0, 6, 9, 5, 7, 4, 1, 1, 2, 2, 7, 4, 2, 5, 1, 5, 2, 7, 3, 3, 7, 6, 2, 2, 3, 8, 1, 1, 6, 1, 7, 5, 2, 8, 1, 4, 5, 3, 0, 7, 8, 8, 7, 7, 2, 3, 6, 1, 6, 8, 1, 6, 4, 3, 4, 5, 9, 6, 3, 8, 5, 0, 1, 9, 5, 1, 3, 1, 8, 5, 9, 7, 7, 0, 4, 8, 7, 6, 3, 4, 1, 7, 8, 7, 4, 0, 2
Offset: 1

Views

Author

Wolfdieter Lang, Mar 23 2013

Keywords

Comments

The continued fraction (0 + K_{k=1..oo} (-2/k))/(-2) = 1/(1-2/(2-2/(3-2/(4- ... converges, and its negative limit is given in the formula section in terms of Bessel functions.
In general, the continued fraction 0 + K_{k=1..oo} (x/k) = x/(1+x/(2+x/(3+... has n-th approximation x*Phat(n,x)/Q(n,x), with the row polynomials Phat of A221913 and Q of A084950. These polynomials are written in terms of Bessel function. Divided by n! = Gamma(n+1) one knows the limit for n -> infinity for these two polynomial systems for given x. This results in the formula 0 + K_{k=1..oo} (x/k) = sqrt(x)*BesselI(1,2*sqrt(x))/BesselI(0,2*sqrt(x)).
For x=1 see for the limit of the continued fraction A052119 and for the n-th approximation A001053(n+1)/A001040(n+1).

Examples

			-1.4397493218702328058...
		

Crossrefs

Cf. A052119 (x=1), A222466 (x=2), A222469/A222470.

Programs

  • Mathematica
    RealDigits[BesselJ[1, 2*Sqrt[2]]/(Sqrt[2]*BesselJ[0, 2*Sqrt[2]]), 10, 50][[1]] (* G. C. Greubel, Aug 16 2017 *)
  • PARI
    besselj(1,sqrt(8))/besselj(0,sqrt(8))/sqrt(2) \\ Charles R Greathouse IV, Feb 19 2014

Formula

Equals (1/2)*sqrt(2)*BesselJ(1,2*sqrt(2))/BesselJ(0,2*sqrt(2)).

A247844 Decimal expansion of the value of the continued fraction [1; 1, 2, 3, 4, 5, ...].

Original entry on oeis.org

1, 6, 9, 7, 7, 7, 4, 6, 5, 7, 9, 6, 4, 0, 0, 7, 9, 8, 2, 0, 0, 6, 7, 9, 0, 5, 9, 2, 5, 5, 1, 7, 5, 2, 5, 9, 9, 4, 8, 6, 6, 5, 8, 2, 6, 2, 9, 9, 8, 0, 2, 1, 2, 3, 2, 3, 6, 8, 6, 3, 0, 0, 8, 2, 8, 1, 6, 5, 3, 0, 8, 5, 2, 7, 6, 4, 6, 4, 1, 1, 1, 2, 9, 9, 6, 9, 6, 5, 6, 5, 4, 1, 8, 2, 6, 7, 6, 5, 6, 8, 7, 2, 3, 9, 8
Offset: 1

Views

Author

Jean-François Alcover, Sep 25 2014

Keywords

Comments

Equals 1+A052119.

Examples

			1.697774657964007982006790592551752599486658262998...
		

Crossrefs

Programs

  • Mathematica
    FromContinuedFraction[Join[{1}, Range[50]]] // RealDigits[#, 10, 105]& // First
    (* or *) 1+BesselI[1, 2]/BesselI[0, 2] // RealDigits[#, 10, 105]& // First
  • PARI
    1+besseli(1,2)/besseli(0,2) \\ Charles R Greathouse IV, Oct 23 2023

Formula

1 + I_1(2) / I_0(2), where I_n(x) gives the modified Bessel function of the first kind.

A347052 Decimal expansion of the continued fraction 1/(1*2 + 1/(2*3 + 1/(3*4 + 1/(4*5 + 1/(5*6 + ...))))).

Original entry on oeis.org

4, 6, 2, 0, 2, 3, 3, 2, 5, 0, 8, 0, 2, 3, 8, 6, 1, 8, 5, 0, 3, 5, 5, 9, 1, 4, 9, 4, 1, 7, 5, 7, 1, 9, 1, 5, 9, 7, 7, 0, 3, 0, 2, 3, 9, 4, 2, 0, 4, 4, 7, 4, 7, 3, 8, 5, 0, 3, 9, 3, 2, 6, 6, 0, 3, 5, 6, 0, 7, 7, 8, 9, 8, 1, 5, 2, 4, 1, 3, 0, 8, 3, 7, 2, 9, 8, 4, 1, 1, 0, 8, 2, 1, 2, 5, 5, 5, 4, 3, 3, 5, 6, 3, 7, 8, 9
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 13 2021

Keywords

Examples

			0.46202332508023861850355914941757191597703...
		

Crossrefs

Programs

  • Mathematica
    terms=106; RealDigits[ContinuedFractionK[k(k+1),{k,terms}],10,terms][[1]] (* Stefano Spezia, Aug 23 2025 *)

Formula

Equals lim_{n -> oo} A346960(n)/A347051(n).

A266579 Numerator of the continued fraction [Sum_{k=0..n} k; 1, 2, 3,..., n].

Original entry on oeis.org

2, 11, 67, 460, 3532, 30225, 286289, 2979896, 33852226, 417123475, 5543942107, 79086006756, 1205573749892, 19561113090785, 336643494142657, 6125614986385360, 117514626855080914, 2370682022353448571, 50173196512398036851, 1111614380526424428380
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2016

Keywords

Examples

			2, 11/3, 67/10, 460/43, 3532/225, 30225/1393, 286289/9976, 2979896/81201, 33852226/740785, 417123475/7489051, 5543942107/83120346, 79086006756/1004933203, 1205573749892/13147251985, 19561113090785/185066460993,...
a(10) = 417123475 because 55+1/(1+1/(2+1/(3+1/(4+1/(5+1/(6+1/(7+1/(8+1/(9+1/10))))))))) = 417123475/7489051 and 1+2+3+4+5+6+7+8+9+10 = 55.
		

Crossrefs

Cf. A000217, A001040 (denominator, offset 2), A001053, A052119.

Programs

  • Mathematica
    Table[Numerator[n ((n + 1)/2) + ContinuedFractionK[1, k, {k, n}]], {n, 20}]

Formula

a(n) = A001040(n+1)*A000217(n) + A001053(n+1).

A293577 Decimal expansion of number with continued fraction expansion 0, 1, 12, 123, 1234, 12345, 123456, ... (A007908).

Original entry on oeis.org

9, 2, 3, 1, 2, 4, 9, 9, 9, 6, 8, 3, 4, 5, 0, 2, 4, 1, 1, 7, 4, 0, 1, 2, 3, 3, 0, 6, 0, 9, 8, 4, 2, 1, 9, 1, 6, 6, 3, 6, 7, 4, 8, 8, 6, 2, 9, 1, 6, 9, 0, 3, 9, 8, 9, 4, 1, 4, 7, 4, 4, 4, 1, 1, 1, 3, 5, 6, 7, 3, 9, 1, 1, 6, 5, 1, 4, 7, 4, 5, 2, 7, 3, 5, 4, 1, 2, 5, 4, 0, 4, 3, 2, 5, 1, 5, 0, 1, 9, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 12 2017

Keywords

Examples

			0.92312499968345024117401233060984219166367488... = 1/(1 + 1/(12 + 1/(123 + 1/(1234 + 1/(12345 + 1/(123456 + 1/...)))))).
		

Crossrefs

Programs

  • Mathematica
    Take[RealDigits[N[FromContinuedFraction[Table[FromDigits[Flatten[IntegerDigits[Range[n]]]], {n, 0, 20}]], 101]][[1]], 100]  (* modified by Ilya Gutkovskiy, Nov 08 2017 *)

Extensions

a(99) corrected by G. C. Greubel, Nov 07 2017

A296140 Decimal expansion of 1/sqrt(1 + 1/sqrt(2 + 1/sqrt(3 + 1/sqrt(4 + 1/sqrt(5 + ...))))).

Original entry on oeis.org

7, 8, 3, 7, 6, 6, 3, 0, 9, 2, 3, 6, 3, 9, 6, 4, 6, 9, 9, 5, 1, 9, 4, 3, 0, 7, 7, 6, 3, 8, 7, 4, 2, 8, 1, 2, 7, 0, 4, 1, 4, 1, 1, 8, 0, 7, 7, 3, 8, 7, 7, 4, 7, 5, 5, 8, 9, 6, 6, 0, 7, 6, 0, 5, 7, 5, 2, 6, 6, 5, 3, 9, 7, 7, 4, 0, 1, 4, 0, 9, 4, 7, 5, 4, 4, 3, 5, 1, 6, 4, 2, 9, 4, 7, 1, 9, 9, 6, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 05 2017

Keywords

Examples

			0.7837663092363964699519430776387428127041411807738774755...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Fold[1/Sqrt[#1 + #2]&, 0, Range[100, 1, -1]], 10, 100][[1]] (* Jean-François Alcover, Dec 19 2017 *)

A365052 Decimal expansion of continued fraction [1; 4, 9, 16, 25, ... n^2, ... ].

Original entry on oeis.org

1, 2, 4, 3, 2, 8, 8, 4, 7, 8, 3, 9, 9, 7, 1, 5, 6, 4, 4, 0, 8, 2, 4, 9, 6, 5, 4, 5, 3, 9, 4, 4, 2, 9, 4, 9, 9, 2, 3, 1, 2, 0, 0, 2, 6, 1, 1, 9, 7, 4, 4, 6, 8, 8, 5, 0, 6, 6, 4, 9, 7, 4, 5, 9, 8, 8, 1, 6, 3, 0, 3, 2, 2, 3, 3, 8, 2, 5, 3, 4, 2, 1, 4, 5, 9, 6, 4, 9, 8, 1, 5, 6, 1, 2, 1, 8, 5, 5, 9, 5
Offset: 1

Views

Author

Rok Cestnik, Aug 18 2023

Keywords

Examples

			1.243288478399715644...
		

Crossrefs

Cf. A073824 (reciprocal), A036246/A036245 (convergents).

Programs

  • Mathematica
    A365052 = RealDigits[FromContinuedFraction[Range[1,50]^2],10,#][[1]]&;
  • PARI
    p(N) = my(m=contfracpnqn(vector(N, i, i^2))); m[1,1]/m[2,1];
    A365052(N) = {my(t=2); while(floor(10^N*p(t)) != floor(10^N*p(t+1)), t++); digits(floor(10^(N-1)*p(t)))};

Formula

Equals 1/A073824.
Previous Showing 11-20 of 24 results. Next