cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A062341 Primes whose sum of digits is 5.

Original entry on oeis.org

5, 23, 41, 113, 131, 311, 401, 1013, 1031, 1103, 1301, 2003, 2111, 3011, 4001, 10103, 10211, 10301, 11003, 12011, 12101, 13001, 20021, 20201, 21011, 21101, 30011, 100103, 101021, 101111, 102101, 103001, 120011, 121001, 200003, 200201, 201011, 201101, 202001
Offset: 1

Views

Author

Amarnath Murthy, Jun 21 2001

Keywords

Examples

			1301 belongs to the sequence since it is a prime with sum of digits = 5.
		

Crossrefs

Cf. A000040 (primes), A007953 (sum of digits), A052219 (digit sum = 5).
Cf. A062339 (same for digit sum s = 4), A062337 (s = 7), and others listed in A244918 (s = 68).
Subsequence of A062340 (primes with sum of digits divisible by 5).

Programs

  • Magma
    [p: p in PrimesUpTo(250000) | &+Intseq(p) eq 5]; // Vincenzo Librandi, Jul 08 2014
    
  • Maple
    T:= n-> `if`(n=1, 5, sort(select(isprime, [seq(seq(seq(
        10^(n-1)+1+10^i+10^j+10^k, k=1..j), j=1..i), i=1..n-1),
        seq(10^(n-1)+3+10^i, i=1..n-1)]))[]):
    seq(T(n), n=1..8);  # Alois P. Heinz, Dec 28 2015
  • Mathematica
    Select[Prime[Range[20000]],Total[IntegerDigits[#]]==5&] (* Harvey P. Dale, Nov 24 2013 *)
  • PARI
    \\ From M. F. Hasler, Mar 09 2022: (Start)
    select( {is_A062341(p,s=5)=sumdigits(p)==s&&isprime(p)}, primes([1,10^6])) \\ 2nd optional parameter for similar sequences with other digit sums.
    A062341_upto_length(L,s=5,a=List(),u=[10^k|k<-[0..L-1]])={forvec(d=[[1,L]|i<-[1..s]], isprime(p=vecsum(vecextract(u,d))) && listput(a,p),1); Set(a)} \\ (End)
  • Python
    from sympy import primerange as primes
    def ok(p): return sum(map(int, str(p))) == 5
    print(list(filter(ok, primes(1, 202002)))) # Michael S. Branicky, May 23 2021
    

Formula

Intersection of A000040 (primes) with A052219 (digit sum 5). - M. F. Hasler, Mar 09 2022

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jul 06 2001

A279769 Numbers n such that the sum of digits of 9n is 18.

Original entry on oeis.org

11, 21, 22, 31, 32, 33, 41, 42, 43, 44, 51, 52, 53, 54, 55, 61, 62, 63, 64, 65, 66, 71, 72, 73, 74, 75, 76, 77, 81, 82, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 121, 122, 131, 132, 133, 141
Offset: 1

Views

Author

M. F. Hasler, Dec 18 2016

Keywords

Comments

Differs from A084854 from a(55) = 110 on.
Numbers n such that A008591(n) is a term of A235228. - Felix Fröhlich, Dec 18 2016
The digital sum of 9n is always a multiple of 9, and never zero. For most numbers < 100, the digital sum is equal to 9, but for example in the range [91..110] all numbers except 100 have their digital sum equal to 18. The b-file / graph gives a hint on the "asymptotic" distribution / density of this set. After a "flat" range like that at [91..110] there comes a record gap. Sizes [and upper ends] of record gaps are: 10 [a(2) = 21], 11 [a(56) = 121, a(119) = 231, a(188) = 341, ..., a(553) = 891, a(616) = 1001], 21 [a(671) = 1121], 31 [a(1331) = 2231], ..., 91 [a(4339) = 8891], 101 [a(4621) = 10001], 121 [a(4841) = 11121], 231 [a(9176) = 22231], ..., 891 [a(24217) = 88891], 1001 [a(25213) = 100001], 1121 [a(25928) = 111121], 2231 [a(47510) = 222231], ..., 8891 [a(108577) = 888891], 10001 [a(111574) = 1000001], 11121 [a(113576) = 1111121], 22231 [a(202511) = 2222231], ..., 88891 [a(416215) = 8888891], ... - M. F. Hasler, Dec 22 2016

Crossrefs

Cf. A007953 (digital sum), A008591, A084854.
Cf. A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 141, Total@ IntegerDigits[9 #] == 18 &]
  • PARI
    is(n) = sumdigits(9*n)==18 \\ Felix Fröhlich, Dec 18 2016

Formula

a(n) = A235228(n)/9.

A279777 Numbers k such that the sum of digits of 9k is 27.

Original entry on oeis.org

111, 211, 221, 222, 311, 321, 322, 331, 332, 333, 411, 421, 422, 431, 432, 433, 441, 442, 443, 444, 511, 521, 522, 531, 532, 533, 541, 542, 543, 544, 551, 552, 553, 554, 555, 611, 621, 622, 631, 632, 633, 641, 642, 643, 644, 651, 652, 653, 654, 655, 661
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

The digital sum of 9k is always a multiple of 9. For most numbers below 100 it is actually equal to 9. Numbers such that the digital sum of 9k is 18 are listed in A279769. Only every third term of the present sequence is divisible by 3.
The sequence of record gaps [and upper end of the gap] is: 100 [a(2) = 211], 101 [a(221) = 1211], 111 [a(4841) = 11211], 111 [a(10121) = 22311], 111 [a(15752) = 33411], ..., 111 [a(45133) = 88911], 111 [a(50413) = 100011], 211 [a(55253) = 111211], 311 [a(110000) = 222311], ..., 911 [a(380557) = 888911], 1011 [a(411049) = 1000011], 1211 [a(436976) = 1111211], 2311 [a(840281) = 2222311], ..., 8911 [a(2451241) = 8888911], ...

Crossrefs

Cf. A008591, A084854, A003991, A004247, A279769 (sumdigits(9n) = 18).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Cf. A007953 (digital sum), A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Cf. A082259.

Programs

  • Mathematica
    Select[Range@ 661, Total@ IntegerDigits[9 #] == 27 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    is(n)=sumdigits(9*n)==27

A279768 Numbers n such that the sum of digits of 8n equals 16.

Original entry on oeis.org

11, 47, 56, 74, 83, 92, 101, 110, 119, 137, 146, 173, 182, 191, 209, 218, 227, 245, 272, 281, 299, 308, 317, 326, 335, 344, 353, 398, 407, 416, 434, 443, 452, 470, 479, 488, 506, 524, 533, 542, 551, 560, 569, 578, 605, 614, 632, 641, 659, 668, 677, 695
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088410 = A069543/8 and A279769 (the analog for 9).

Crossrefs

Cf. A007953 (digital sum), A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 700, Total@ IntegerDigits[8 #] == 16 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    is(n)=sumdigits(8*n)==16

A279775 Numbers k such that the sum of digits of 5k equals 10.

Original entry on oeis.org

11, 29, 38, 47, 56, 65, 74, 83, 92, 101, 110, 128, 146, 164, 182, 209, 218, 227, 236, 245, 254, 263, 272, 281, 290, 308, 326, 344, 362, 380, 407, 416, 425, 434, 443, 452, 461, 470, 488, 506, 524, 542, 560, 605, 614, 623, 632, 641, 650, 668, 686, 704, 722, 740, 803, 812, 821, 830, 848, 866, 884, 902, 920
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088407 = A069540/5 and A279769 (the analog for 9).

Crossrefs

Cf. A007953 (digital sum), A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 920, Total@ IntegerDigits[5 #] == 10 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    select( is(n)=sumdigits(5*n)==10, [0..999])
    
  • Python
    def ok(n): return sum(map(int, str(5*n))) == 10
    print([k for k in range(921) if ok(k)]) # Michael S. Branicky, Nov 29 2021

A069524 Smallest multiple of n with digit sum = 5, or 0 if no such number exists, e.g. a(3k) = a(11k) = 0.

Original entry on oeis.org

5, 14, 0, 32, 5, 0, 14, 32, 0, 50, 0, 0, 104, 14, 0, 32, 221, 0, 1121, 140, 0, 0, 23, 0, 50, 104, 0, 140, 203, 0, 2201, 32, 0, 2210, 140, 0, 0, 3002, 0, 320, 41, 0, 2021, 0, 0, 230, 2021, 0, 22001, 50, 0, 104, 212, 0, 0, 1400, 0, 2030, 1121, 0, 122, 22010, 0, 320, 1040
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2002

Keywords

Comments

a(3k)= a(11k) =a(37k)=0. - Ray Chandler, Jul 30 2003

Crossrefs

Programs

  • Maple
    nextL:= proc(L)
     local m,q,Lp;
     for m from 1 do
       if L[m] > 0 then
        if m = LinearAlgebra:-Dimension(L) then return <4,0$(m-1),1>
        else Lp:= L;
           Lp[1]:= L[m]-1;
           Lp[2..m]:= 0;
           Lp[m+1]:= L[m+1]+1;
           return Lp;
        fi
       fi
     od;
    end proc:
    N:= 300:
    Agenda:= remove(t -> ormap(s -> (t mod s = 0), [3,11,37,101,137,239]), {$1..N}):
    L:= <5>: x:= 5:
    A:= Vector(N):
    while Agenda <> {} and x < 10^40 do
      x:= add(L[i]*10^(i-1),i=1..LinearAlgebra:-Dimension(L));
      found,Agenda:= selectremove(t -> x mod t = 0, Agenda);
      if found <> {} then
        A[convert(found,list)]:= x;
      fi;
      L:= nextL(L);
    od:
    convert(A,list): # Robert Israel, Sep 05 2019
  • Mathematica
    Table[If[MemberQ[Table[Mod[n,q],{q,{3,11,37,101,137,239}}],0],0,With[{k=5000},SelectFirst[n*Range[k],Total[IntegerDigits[#]] == 5&]]],{n,70}] (* Harvey P. Dale, Nov 03 2024 *)

Formula

a(n) = n*A088394(n). - R. J. Mathar, Aug 06 2019

Extensions

More terms from Ray Chandler, Jul 30 2003

A279770 Numbers n such that the sum of digits of 7n equals 14.

Original entry on oeis.org

11, 38, 47, 56, 65, 74, 83, 92, 101, 110, 119, 155, 164, 182, 191, 209, 218, 236, 245, 263, 272, 299, 308, 317, 326, 335, 344, 353, 362, 380, 389, 416, 434, 452, 461, 470, 479, 488, 506, 515, 533, 560, 578, 587, 596, 605, 623, 632, 650, 659, 686, 722, 731
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088409 = A063416/7 and A279769 (the analog for 9).

Crossrefs

Cf. A007953 (digital sum), A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 731, Total@ IntegerDigits[7 #] == 14 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    is(n)=sumdigits(7*n)==14

A279772 Numbers n such that the sum of digits of 2n equals 4.

Original entry on oeis.org

2, 11, 20, 56, 65, 101, 110, 155, 200, 506, 515, 551, 560, 605, 650, 1001, 1010, 1055, 1100, 1505, 1550, 2000, 5006, 5015, 5051, 5060, 5105, 5150, 5501, 5510, 5555, 5600, 6005, 6050, 6500, 10001, 10010, 10055, 10100, 10505, 10550, 11000, 15005, 15050, 15500
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088404 = A069537/2 and A279769 (the analog for 9).

Crossrefs

Cf. A007953 (digital sum), A052216 (sumdigits(n) = 2), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 15500, Total@ IntegerDigits[2 #] == 4 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    select( is(n)=sumdigits(2*n)==4, [1..9999])

A279773 Numbers n such that the sum of digits of 3n equals 6.

Original entry on oeis.org

2, 5, 8, 11, 14, 17, 20, 35, 38, 41, 44, 47, 50, 68, 71, 74, 77, 80, 101, 104, 107, 110, 134, 137, 140, 167, 170, 200, 335, 338, 341, 344, 347, 350, 368, 371, 374, 377, 380, 401, 404, 407, 410, 434, 437, 440, 467, 470, 500, 668, 671, 674, 677, 680, 701
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088405 = A052217/3 and A279769 (the analog for 9).

Crossrefs

Cf. A007953 (digital sum), A279772 (sumdigits(2n) = 4), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 720, Total@ IntegerDigits[3 #] == 6 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    select( is(n)=sumdigits(3*n)==6, [1..999])

A279774 Numbers n such that the sum of digits of 4n equals 8.

Original entry on oeis.org

2, 11, 20, 29, 38, 56, 65, 83, 101, 110, 128, 155, 200, 254, 263, 281, 290, 308, 326, 335, 353, 380, 425, 506, 515, 533, 551, 560, 578, 605, 650, 758, 776, 785, 803, 830, 875, 1001, 1010, 1028, 1055, 1100, 1253, 1280, 1325, 1505, 1550, 1775
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088406 = A063997/4 and A279769 (the analog for 9).

Crossrefs

Cf. A007953 (digital sum), A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 2000, Total@ IntegerDigits[4 #] == 8 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    select( is(n)=sumdigits(4*n)==8, [1..1999])
Previous Showing 21-30 of 34 results. Next