cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A069526 Smallest multiple of n with digit sum = 7, or 0 if no such number exists, e.g. a(3k)= a(11k) = 0.

Original entry on oeis.org

7, 16, 0, 16, 25, 0, 7, 16, 0, 70, 0, 0, 52, 70, 0, 16, 34, 0, 133, 160, 0, 0, 115, 0, 25, 52, 0, 700, 232, 0, 124, 160, 0, 34, 70, 0, 0, 304, 0, 160, 205, 0, 43, 0, 0, 322, 1222, 0, 2401, 250, 0, 52, 106, 0, 0, 7000, 0, 232, 4012, 0, 61, 124, 0, 1024, 520, 0, 11122, 340
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2002

Keywords

Comments

Either no multiples of 37 have digit sum 7 or their first values are > 10000000. - Larry Reeves (larryr(AT)acm.org), Jul 02 2002
No multiples of 3, 11, 37, 101 or 271 have digit sum 7. - Robert Israel, Feb 13 2024

Crossrefs

Programs

  • Maple
    unfinished:= true: V:= Vector(300): V0:= select(t -> igcd(t, 3*11*37*101*271) = 1, {$1..300}):
    for i1 from 0 while unfinished do
      for i2 from 0 to i1 while unfinished do
        for i3 from 0 to i2 while unfinished do
          for i4 from 0 to i3 while unfinished do
            for i5 from 0 to i4 while unfinished do
              for i6 from 0 to i5 while unfinished do
                for i7 from 0 to i6 while unfinished do
                  v:= 10^i1 + 10^i2 + 10^i3 + 10^i4 + 10^i5 + 10^i6 + 10^i7;
                  dv:= numtheory:-divisors(v);
                  for s in V0 intersect dv do
                    V[s]:= v;
                  od;
                  V0:= V0 minus dv;
                  unfinished:= evalb(V0 <> {});
    od od od od od od od:
    convert(V,list); # Robert Israel, Feb 13 2024

Formula

a(n)= n*A088396(n). - R. J. Mathar, Aug 06 2019

Extensions

More terms from Larry Reeves, Jul 02 2002

A119461 Zero-free numbers with digit sum equal to 7.

Original entry on oeis.org

7, 16, 25, 34, 43, 52, 61, 115, 124, 133, 142, 151, 214, 223, 232, 241, 313, 322, 331, 412, 421, 511, 1114, 1123, 1132, 1141, 1213, 1222, 1231, 1312, 1321, 1411, 2113, 2122, 2131, 2212, 2221, 2311, 3112, 3121, 3211, 4111, 11113, 11122, 11131, 11212, 11221, 11311, 12112, 12121, 12211, 13111, 21112, 21121, 21211, 22111, 31111, 111112, 111121, 111211, 112111, 121111, 211111, 1111111
Offset: 1

Views

Author

Zak Seidov, May 20 2006

Keywords

Comments

There are exactly 64 such numbers while numbers with digit sum equal to 7 (A052221) are infinite.

Crossrefs

Subsequence of A052221.

Programs

  • Mathematica
    Union[Flatten[Table[FromDigits/@Select[Tuples[Range[7],n],Total[#]==7&],{n,7}]]] (* Harvey P. Dale, Aug 29 2015 *)
  • Python
    def ok(n): s = str(n); return '0' not in s and sum(map(int, s)) == 7
    print(list(filter(ok, range(1111112)))) # Michael S. Branicky, Jul 16 2021

A375460 Lexicographically earliest sequence of distinct nonnegative terms arranged in successive chunks whose digitsum = 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 10, 11, 20, 6, 12, 100, 7, 21, 8, 101, 9, 1000, 13, 14, 10000, 15, 22, 16, 30, 17, 110, 18, 100000, 19, 23, 31, 1000000, 24, 40, 25, 102, 26, 200, 27, 10000000, 28, 32, 41, 33, 103, 34, 111, 35, 1001, 36, 100000000, 37, 42, 112, 43, 120, 44, 1010, 45, 1000000000
Offset: 1

Views

Author

Eric Angelini, Aug 15 2024

Keywords

Comments

The first integer that will never appear in the sequence is 29, as its digitsum exceeds 10.
From Michael S. Branicky, Aug 16 2024: (Start)
Infinite since A052224 is infinite (as are all sequences with digital sum 1..10).
a(6492) has 1001 digits. (End)

Examples

			The first chunk of integers with digitsum 10 is (0,1,2,3,4);
the next one is (5,10,11,20),
the next one is (6,12,100),
the next one is (7,21),
the next one is (8,101),
the next one is (9,1000),
the next one is (13,14,10000), etc.
The concatenation of the above chunks produce the sequence.
		

Crossrefs

Numbers with digital sum 1..10: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10).

Programs

  • Python
    from itertools import islice
    def bgen(ds): # generator of terms with digital sum ds
        def A051885(n): return ((n%9)+1)*10**(n//9)-1 # due to Chai Wah Wu
        def A228915(n): # due to M. F. Hasler
            p = r = 0
            while True:
                d = n % 10
                if d < 9 and r: return (n+1)*10**p + A051885(r-1)
                n //= 10; r += d; p += 1
        k = A051885(ds)
        while True: yield k; k = A228915(k)
    def agen(): # generator of terms
        an, ds_block = 0, 0
        dsg = [None] + [bgen(i) for i in range(1, 11)]
        dsi = [None] + [(next(dsg[i]), i) for i in range(1, 11)]
        while True:
            yield an
            an, ds_an = min(dsi[j] for j in range(1, 11-ds_block))
            ds_block = (ds_block + ds_an)%10
            dsi[ds_an] = (next(dsg[ds_an]), ds_an)
    print(list(islice(agen(), 61))) # Michael S. Branicky, Aug 16 2024

Extensions

a(46) and beyond from Michael S. Branicky, Aug 16 2024.

A118703 Zero-free primes with digit sum equal to 7.

Original entry on oeis.org

7, 43, 61, 151, 223, 241, 313, 331, 421, 1123, 1213, 1231, 1321, 2113, 2131, 2221, 2311, 3121, 4111, 11113, 11131, 11311, 12211, 21121, 21211, 22111, 111121, 111211, 112111
Offset: 1

Views

Author

Zak Seidov, May 20 2006

Keywords

Comments

There are exactly 29 such primes the largest one being 112111.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[11000]],DigitCount[#,10,0]==0&&Total[ IntegerDigits[ #]] == 7&] (* Harvey P. Dale, Dec 04 2020 *)
  • PARI
    isok(n) = isprime(n) && (sumdigits(n) == 7) && (vecmin(digits(n)) != 0); \\ Michel Marcus, Oct 10 2013

A259144 Number of n-digit primes whose sum of digits is 7.

Original entry on oeis.org

1, 2, 7, 20, 28, 58, 95, 154, 226, 278, 403, 570, 734, 949, 1200, 1515, 1931, 2328, 2908, 3529, 4196, 5034, 5800, 6870, 7871, 9132, 10574, 12359, 14005, 15871, 17924, 20231, 22505, 25903, 28800, 31532, 34830, 38479, 43334, 48847, 52769, 57173, 61545, 67774, 75186
Offset: 1

Views

Author

Zak Seidov, Jun 19 2015

Keywords

Crossrefs

Programs

  • PARI
    a(n)=n--; my(A,B,C,D); sum(a=0,n, A=10^n+10^a+1; sum(b=a,n, B=A+10^b; sum(c=b,n, C=B+10^c; sum(d=c,n, D=C+10^d; sum(e=d,n, isprime(D+10^e)))))) \\ Charles R Greathouse IV, Jun 19 2015

Extensions

More terms from Alois P. Heinz, Jun 19 2015

A279771 Numbers n such that the sum of digits of 11n equals 11.

Original entry on oeis.org

19, 28, 37, 46, 55, 64, 73, 82, 190, 280, 370, 460, 550, 640, 730, 820, 919, 928, 937, 946, 955, 964, 973, 982, 991, 1819, 1828, 1837, 1846, 1855, 1864, 1873, 1882, 1891, 1900, 2728, 2737, 2746, 2755, 2764, 2773, 2782, 2791, 2800, 3637, 3646, 3655, 3664
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088404 = A069537/2 through A088410 = A069543/8.

Crossrefs

Cf. A007953 (digital sum), Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Cf. A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).

Programs

  • Mathematica
    Select[Range@ 3664, Total@IntegerDigits[11 #] == 11 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    is(n)=sumdigits(11*n)==11
Previous Showing 31-36 of 36 results.