cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A280204 G.f.: Product_{k>=1} (1+x^(k^2)) / (1-x^k).

Original entry on oeis.org

1, 2, 3, 5, 9, 14, 21, 31, 45, 65, 92, 127, 175, 239, 322, 430, 572, 753, 985, 1281, 1657, 2131, 2727, 3471, 4401, 5558, 6988, 8751, 10924, 13588, 16846, 20819, 25653, 31518, 38621, 47195, 57530, 69958, 84869, 102723, 124070, 149532, 179852, 215894, 258668
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 28 2016

Keywords

Comments

Convolution of A033461 and A000041.

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^(k^2))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(2*n/3) + 2^(-5/4)*3^(1/4)*(sqrt(2)-1)*Zeta(3/2)*n^(1/4) - 3*(sqrt(2)-1)^2*Zeta(3/2)^2/(64*Pi)) / (2^(5/2)*sqrt(3)*n).

A324587 Heinz numbers of integer partitions of n into distinct perfect squares (A033461).

Original entry on oeis.org

1, 2, 7, 14, 23, 46, 53, 97, 106, 151, 161, 194, 227, 302, 311, 322, 371, 419, 454, 541, 622, 661, 679, 742, 827, 838, 1009, 1057, 1082, 1193, 1219, 1322, 1358, 1427, 1589, 1619, 1654, 1879, 2018, 2114, 2143, 2177, 2231, 2386, 2437, 2438, 2741, 2854, 2933
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of distinct elements of A011757.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    7: {4}
   14: {1,4}
   23: {9}
   46: {1,9}
   53: {16}
   97: {25}
  106: {1,16}
  151: {36}
  161: {4,9}
  194: {1,25}
  227: {49}
  302: {1,36}
  311: {64}
  322: {1,4,9}
  371: {4,16}
  419: {81}
  454: {1,49}
  541: {100}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],And@@Cases[FactorInteger[#],{p_,k_}:>k==1&&IntegerQ[Sqrt[PrimePi[p]]]]&]

A351982 Number of integer partitions of n into prime parts with prime multiplicities.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 3, 0, 1, 1, 3, 3, 3, 0, 1, 4, 5, 5, 3, 3, 5, 8, 5, 5, 6, 8, 8, 11, 7, 8, 10, 17, 14, 14, 12, 17, 17, 21, 18, 23, 20, 28, 27, 31, 27, 36, 32, 35, 37, 46, 41, 52, 45, 60, 58, 63, 59, 78, 71, 76, 81, 87, 80, 103, 107, 113, 114, 127
Offset: 0

Views

Author

Gus Wiseman, Mar 18 2022

Keywords

Examples

			The partitions for n = 4, 6, 10, 19, 20, 25:
  (22)  (33)   (55)     (55333)     (7733)       (55555)
        (222)  (3322)   (55522)     (77222)      (77722)
               (22222)  (3333322)   (553322)     (5533333)
                        (33322222)  (5522222)    (5553322)
                                    (332222222)  (55333222)
                                                 (55522222)
                                                 (333333322)
                                                 (3333322222)
		

Crossrefs

The version for just prime parts is A000607, ranked by A076610.
The version for just prime multiplicities is A055923, ranked by A056166.
For odd instead of prime we have A117958, ranked by A352142.
The constant case is A230595, ranked by A352519.
Allowing any multiplicity > 1 gives A339218, ranked by A352492.
These partitions are ranked by A346068.
The non-constant case is A352493, ranked by A352518.
A000040 lists the primes.
A001221 counts constant partitions of prime length, ranked by A053810.
A001694 lists powerful numbers, counted A007690, weak A052485.
A038499 counts partitions of prime length.
A101436 counts parts of prime signature that are themselves prime.
A112798 lists prime indices, reverse A296150, sum A056239.
A124010 gives prime signature, sorted A118914, sum A001222.
A257994 counts prime indices that are prime, nonprime A330944.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], And@@PrimeQ/@#&&And@@PrimeQ/@Length/@Split[#]&]],{n,0,30}]

A387118 Number of integer partitions of n without choosable initial intervals.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 6, 8, 13, 19, 28, 37, 52, 70, 97, 130, 172, 224, 293, 378, 492, 630, 806, 1018, 1286, 1609, 2019, 2514, 3131, 3874, 4784
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2025

Keywords

Comments

The initial interval of a nonnegative integer x is the set {1,...,x}.
We say that a sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1},{2},{1,3},{2,3}) is not.

Examples

			The partition y = (2,2,1) has initial intervals ({1,2},{1,2},{1}), which are not choosable, so y is counted under a(5).
The a(2) = 1 through a(8) = 13 partitions:
  (11)  (111)  (211)   (221)    (222)     (511)      (611)
               (1111)  (311)    (411)     (2221)     (2222)
                       (2111)   (2211)    (3211)     (3221)
                       (11111)  (3111)    (4111)     (3311)
                                (21111)   (22111)    (4211)
                                (111111)  (31111)    (5111)
                                          (211111)   (22211)
                                          (1111111)  (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

The complement is counted by A238873, ranks A387112.
The complement for divisors is A239312, ranks A368110.
For divisors instead of initial intervals we have A370320, ranks A355740.
The complement for prime factors is A370592, ranks A368100.
For prime factors instead of initial intervals we have A370593, ranks A355529.
These partitions have ranks A387113.
For partitions instead of initial intervals we have A387134.
The complement for partitions is A387328.
For strict partitions instead of initial intervals we have A387137, ranks A387176.
The complement for strict partitions is A387178.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A367902 counts choosable set-systems, complement A367903.
A370582 counts sets with choosable prime factors, complement A370583.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Tuples[Range/@#],UnsameQ@@#&]=={}&]],{n,0,10}]

A387137 Number of integer partitions of n whose parts do not have choosable sets of strict integer partitions.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 6, 9, 14, 20, 29, 39, 56, 74, 101, 134, 178, 232, 305, 392, 508, 646, 825, 1042, 1317, 1649, 2066, 2567, 3190, 3937, 4859, 5960, 7306, 8914, 10863, 13183, 15984, 19304, 23288, 28003, 33631, 40272, 48166, 57453, 68448, 81352, 96568, 114383
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2025

Keywords

Comments

We say that a sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1},{2},{1,3},{2,3}) is not.
a(n) is the number of integer partitions of n such that it is not possible to choose a sequence of distinct strict integer partitions, one of each part.
Also the number of integer partitions of n with at least one part k whose multiplicity exceeds A000009(k).

Examples

			The a(2) = 1 through a(8) = 14 partitions:
  (11)  (111)  (22)    (221)    (222)     (322)      (422)
               (211)   (311)    (411)     (511)      (611)
               (1111)  (2111)   (2211)    (2221)     (2222)
                       (11111)  (3111)    (3211)     (3221)
                                (21111)   (4111)     (3311)
                                (111111)  (22111)    (4211)
                                          (31111)    (5111)
                                          (211111)   (22211)
                                          (1111111)  (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

The complement for initial intervals is A238873, ranks A387112.
The complement for divisors is A239312, ranks A368110.
Twice-partitions of this type (into distinct strict partitions) are counted by A358914.
For divisors instead of strict partitions we have A370320, ranks A355740.
The complement for prime factors is A370592, ranks A368100.
For prime factors instead of strict partitions we have A370593, ranks A355529.
For initial intervals instead of strict partitions we have A387118, ranks A387113.
For all partitions instead of strict partitions we have A387134, ranks A387577.
These partitions are ranked by A387176.
The complement is counted by A387178, ranks A387177.
The complement for partitions is A387328, ranks A387576.
The version for constant partitions is A387329, ranks A387180.
The complement for constant partitions is A387330, ranks A387181.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A367902 counts choosable set-systems, complement A367903.

Programs

  • Mathematica
    strptns[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n],Length[Select[Tuples[strptns/@#],UnsameQ@@#&]]==0&]],{n,0,15}]

A387112 Numbers with (strictly) choosable initial intervals of prime indices.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2025

Keywords

Comments

First differs from A371088 in having a(86) = 121.
The initial interval of a nonnegative integer x is the set {1,...,x}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We say that a set or sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1,2,3},{1},{1,3},{2}) is not.
This sequence lists all numbers k such that if the prime indices of k are (x1,x2,...,xz), then the sequence of sets (initial intervals) ({1,...,x1},{1,...,x2},...,{1,...,xz}) is choosable.

Examples

			The prime indices of 85 are {3,7}, with initial intervals {{1,2,3},{1,2,3,4,5,6,7}}, which are choosable, so 85 is in the sequence
The prime indices of 90 are {1,2,2,3}, with initial intervals {{1},{1,2},{1,2},{1,2,3}}, which are not choosable, so 90 is not in the sequence.
		

Crossrefs

Partitions of this type are counted by A238873, complement A387118.
For partitions instead of initial intervals we have A276078, complement A276079.
For prime factors instead of initial intervals we have A368100, complement A355529.
For divisors instead of initial intervals we have A368110, complement A355740.
These are all the positions of nonzero terms in A387111, complement A387134.
The complement is A387113.
For strict partitions instead of initial intervals we have A387176, complement A387137.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A367902 counts choosable set-systems, complement A367903.
A370582 counts sets with choosable prime factors, complement A370583.
A370585 counts maximal subsets with choosable prime factors.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Range/@prix[#]],UnsameQ@@#&]!={}&]

A387176 Numbers whose prime indices do not have choosable sets of strict integer partitions. Zeros of A387115.

Original entry on oeis.org

4, 8, 9, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 45, 48, 52, 54, 56, 60, 63, 64, 68, 72, 76, 80, 81, 84, 88, 90, 92, 96, 99, 100, 104, 108, 112, 116, 117, 120, 124, 125, 126, 128, 132, 135, 136, 140, 144, 148, 152, 153, 156, 160, 162, 164, 168, 171, 172
Offset: 1

Views

Author

Gus Wiseman, Aug 27 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We say that a sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1},{2},{1,3},{2,3}) is not.

Crossrefs

The complement for all partitions appears to be A276078, counted by A052335.
For all partitions we appear to have A276079, counted by A387134.
For divisors instead of strict partitions we have A355740, counted by A370320.
Twice-partitions of this type (into distinct strict partitions) are counted by A358914.
The complement for divisors is A368110, counted by A239312.
The complement for initial intervals is A387112, counted by A238873, see A387111.
For initial intervals instead of strict partitions we have A387113, counted by A387118.
These are the positions of 0 in A387115.
Partitions of this type are counted by A387137, complement A387178.
The complement is A387177.
The version for constant partitions is A387180, counted by A387329.
The complement for constant partitions is A387181, counted by A387330.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together the prime indices of n.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@prix[#]],UnsameQ@@#&]=={}&]

A303942 Number of partitions of n into at most 1 copy of 1^2, 2 copies of 2^2, 3 copies of 3^2, ... .

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 1, 0, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 3, 2, 1, 2, 2, 1, 2, 3, 4, 3, 3, 2, 2, 2, 2, 4, 4, 4, 3, 4, 3, 2, 3, 5, 7, 5, 5, 5, 6, 4, 3, 6, 8, 8, 5, 6, 6, 6, 6, 7, 9, 9, 10, 8, 8, 7, 8, 10, 11, 12, 10, 11, 10, 10, 9, 12, 15, 14, 14
Offset: 0

Views

Author

Seiichi Manyama, May 03 2018

Keywords

Examples

			   n |              | a(n)
-----+--------------+------
   1 | 1            |  1
   4 | 4            |  1
   5 | 4+1          |  1
   8 | 4+4          |  1
   9 | 9, 4+4+1     |  2
  10 | 9+1          |  1
  13 | 9+4          |  1
  14 | 9+4+1        |  1
  16 | 16           |  1
  17 | 16+1, 9+4+4  |  2
  18 | 9+9, 9+4+4+1 |  2
		

Crossrefs

Formula

G.f.: Product_{k>=1} (1-x^(k^2*(k+1)))/(1-x^(k^2)).

A387113 Numbers whose prime indices do not have (strictly) choosable initial intervals.

Original entry on oeis.org

4, 8, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 90, 92, 96, 100, 104, 108, 112, 116, 120, 124, 126, 128, 132, 135, 136, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192
Offset: 1

Views

Author

Gus Wiseman, Aug 24 2025

Keywords

Comments

The initial interval of a nonnegative integer x is the set {1,...,x}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We say that a set or sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1,2,3},{1},{1,3},{2}) is not.
This sequence lists all numbers k such that if the prime indices of k are (x1,x2,...,xz), then the sequence of sets (initial intervals) ({1,...,x1},{1,...,x2},...,{1,...,xz}) is not choosable.

Examples

			The prime indices of 18 are {1,2,2}, with initial intervals ({1},{1,2},{1,2}), which have choices (1,1,1), (1,1,2), (1,2,1), (1,2,2), and since none of these are strict, 18 is in the sequence.
The prime indices of 85 are {3,7}, with initial intervals {{1,2,3},{1,2,3,4,5,6,7}}, which are choosable, so 85 is in not the sequence.
The prime indices of 90 are {1,2,2,3}, with initial intervals {{1},{1,2},{1,2},{1,2,3}}, which are not choosable, so 90 is in the sequence.
The terms together with their prime indices begin:
    4: {1,1}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   27: {2,2,2}
   28: {1,1,4}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   44: {1,1,5}
   48: {1,1,1,1,2}
   52: {1,1,6}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
		

Crossrefs

For partitions instead of initial intervals we have A276079, complement A276078.
For prime factors instead of initial intervals we have A355529, complement A368100.
For divisors instead of initial intervals we have A355740, complement A368110.
These are the positions of 0 in A387111, complement A387134.
The complement is A387112.
Partitions of this type are counted by A387118, complement A238873.
For strict partitions instead of initial intervals we have A387137, complement A387176.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A367902 counts choosable set-systems, complement A367903.
A370582 counts sets with choosable prime factors, complement A370583.
A370585 counts maximal subsets with choosable prime factors.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Range/@prix[#]],UnsameQ@@#&]=={}&]

A340829 Number of strict integer partitions of n whose Heinz number (product of primes of parts) is divisible by n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 0, 0, 2, 3, 0, 4, 3, 4, 0, 8, 0, 10, 0, 11, 12, 19, 0, 0, 22, 0, 0, 46, 23, 56, 0, 64, 66, 86, 0, 125, 104, 135, 0, 196, 111, 230, 0, 0, 274, 353, 0, 0, 0, 563, 0, 687, 0, 974, 0, 1039, 1052, 1290, 0, 1473, 1511, 0, 0, 2707, 1614, 2664, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2021

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. The Heinz numbers of these partitions are squarefree numbers divisible by the sum of their prime indices.

Examples

			The a(6) = 1 through a(19) = 10 partitions (empty columns indicated by dots, A = 10, B = 11):
  321  43   .  .  631   65    .  76    941   A32    .  A7     .  B8
       421        4321  542      643   6431  6432      764       865
                        5321     652   7421  9321      872       874
                                 6421        54321     971       982
                                                       7532      A81
                                                       7541      8542
                                                       7631      8632
                                                       74321     8641
                                                                 8731
                                                                 85321
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
Positions of zeros are 2 and A013929.
The non-strict version is A330950 (A324851) q.v.
A000009 counts strict partitions.
A003963 multiplies together prime indices.
A018818 counts partitions into divisors (A326841).
A047993 counts balanced partitions (A106529).
A056239 adds up prime indices.
A057568 counts partitions whose product is divisible by their sum (A326149).
A067538 counts partitions whose length/max divides sum (A316413/A326836).
A072233 counts partitions by sum and length, with strict case A008289.
A102627 counts strict partitions whose length divides sum.
A112798 lists the prime indices of each positive integer.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A324925 counts partitions whose Heinz number is divisible by their product.
A326842 counts partitions whose parts and length all divide sum (A326847).
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A330952 counts partitions whose Heinz number is divisible by all parts.
A340828 counts strict partitions with length divisible by maximum.
A340830 counts strict partitions with parts divisible by length.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[Times@@Prime/@#,n]&]],{n,30}]
Previous Showing 11-20 of 29 results. Next