cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-47 of 47 results.

A039981 An example of a d-perfect sequence.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 2, 2, 1, 0, 1, 1, 2, 0, 0, 2, 0, 1, 2, 2, 0, 0, 2, 1, 1, 1, 0, 0, 1, 1, 2, 0, 0, 2, 0, 0, 2, 0, 1, 2, 2, 1, 0, 1, 1, 2, 0, 1, 2, 2, 1, 0, 1, 2, 2, 2, 0, 0, 2, 1, 1, 1, 2, 0, 2, 2, 1, 0, 0, 1, 0, 2, 1, 1, 0, 0, 1, 2, 2, 2, 1, 0, 1, 1, 2, 0, 0, 2, 0, 0, 2, 0, 1, 2, 2, 1, 0, 1, 1, 2, 0, 1, 2, 2, 1
Offset: 1

Views

Author

Keywords

Formula

a(n) = A052709(n) mod 3. - Christian G. Bower, Jun 12 2005

Extensions

More terms from Christian G. Bower, Jun 12 2005

A052726 E.g.f. (1-sqrt(1-4*x-4*x^2))/ (2*(1+x)).

Original entry on oeis.org

0, 1, 2, 18, 216, 3720, 81360, 2172240, 68423040, 2484639360, 102190636800, 4695453100800, 238382331264000, 13251891094041600, 800600878273996800, 52229642780899584000, 3659347096696811520000, 274040260725697449984000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{B=Prod(Z,C),S=Union(B,Z,C),C=Prod(S,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1-Sqrt[1-4x-4x^2])/(2(1+x)),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 15 2020 *)

Formula

D-finite with recurrence: {a(1)=1, a(0)=0, a(2)=2, (-4*n^3-12*n^2-8*n)*a(n) +(-22*n-12-8*n^2)*a(n+1) +(-3*n-3)*a(n+2) +a(n+3) =0.
a(n) = n!*A052709(n). - R. J. Mathar, Oct 18 2013

A108073 Triangle in A071943 with rows reversed.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 9, 7, 3, 1, 31, 24, 12, 4, 1, 113, 89, 46, 18, 5, 1, 431, 342, 183, 76, 25, 6, 1, 1697, 1355, 741, 323, 115, 33, 7, 1, 6847, 5492, 3054, 1376, 520, 164, 42, 8, 1, 28161, 22669, 12768, 5900, 2326, 786, 224, 52, 9, 1, 117631, 94962, 54033, 25464
Offset: 0

Views

Author

N. J. A. Sloane, Jun 05 2005

Keywords

Comments

A convolution triangle based on A052709 (with first term omitted). - Philippe Deléham, Sep 15 2005

Examples

			1; 1,1; 3,2,1; 9,7,3,1; 31,24,12,4,1; ...
		

Crossrefs

Row sums yield A071356. Column 0 yields A052709.

Programs

  • Maple
    q:=sqrt(1-4*z-4*z^2): G:=(1-q)/z/(2-t+2*z+t*q): Gserz:=simplify(series(G,z=0,14)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gserz,z^n) od: for n from 0 to 10 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form # Emeric Deutsch, Jun 06 2005
  • Mathematica
    T[n_, n_] = 1; T[n_, k_] := (k+1)*Sum[Binomial[i, n-k-i] * Binomial[k+2*i, i] / (k+i+1), {i, 1, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 29 2015, after Vladimir Kruchinin *)
  • Maxima
    T(n,k):=if n=k then 1 else k*sum((binomial(i,n-k-i)*binomial(k+2*i-1,i))/(k+i),i,1,n-k); /* Vladimir Kruchinin, Apr 27 2015 */

Formula

G.f.: (1-q)/(z(2 - t + 2z + tq)), where q = sqrt(1 - 4z - 4z^2). - Emeric Deutsch, Jun 06 2005
T(0, 0) = 1; T(n, k) = 0 if k < 0 or if k > n; T(n, k) = Sum_{j>=0} T(n-1, k-1+j) + Sum_{j>=0} T(n-1, k+1+j). - Philippe Deléham, Sep 15 2005
T(n,k) = k*Sum_{i=1..(n-k)} C(i,n-k-i)*C(k+2*i-1,i)/(k+i), n > k, T(n,n)=1. - Vladimir Kruchinin, Apr 27 2015

Extensions

More terms from Emeric Deutsch, Jun 06 2005

A108075 Triangle in A071945 with rows reversed.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 9, 9, 5, 1, 31, 31, 19, 7, 1, 113, 113, 73, 33, 9, 1, 431, 431, 287, 143, 51, 11, 1, 1697, 1697, 1153, 609, 249, 73, 13, 1, 6847, 6847, 4719, 2591, 1151, 399, 99, 15, 1, 28161, 28161, 19617, 11073, 5201, 2001, 601, 129, 17, 1, 117631, 117631, 82623
Offset: 0

Views

Author

N. J. A. Sloane, Jun 05 2005

Keywords

Examples

			Triangle begins:
   1;
   1,  1;
   3,  3,  1;
   9,  9,  5, 1;
  31, 31, 19, 7, 1;
  ...
		

Crossrefs

Row sums yield A052705. Column 0 yields A052709.

Programs

  • Maple
    q:=sqrt(1-4*z-4*z^2): G:=(1-q)/z/(1+z)/(2-t+t*q): Gser:=simplify(series(G,z=0,13)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 10 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form - Emeric Deutsch, Jun 06 2005

Formula

G.f.: (1-q)/(z(1+z)(2-t+tq)), where q = sqrt(1 - 4z - 4z^2). - Emeric Deutsch, Jun 06 2005
T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n,k+1), T(0,0)=1. - Philippe Deléham, Nov 18 2009

Extensions

More terms from Emeric Deutsch, Jun 06 2005

A128753 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and having k UDUDU's (n >= 0; 0 <= k <= n-2 for n >= 2).

Original entry on oeis.org

1, 1, 3, 9, 1, 31, 4, 1, 113, 19, 4, 1, 431, 86, 21, 4, 1, 1697, 393, 101, 23, 4, 1, 6847, 1800, 492, 116, 25, 4, 1, 28161, 8279, 2388, 596, 131, 27, 4, 1, 117631, 38218, 11603, 3032, 705, 146, 29, 4, 1, 497665, 177013, 56407, 15403, 3732, 819, 161, 31, 4, 1
Offset: 0

Views

Author

Emeric Deutsch, Apr 01 2007

Keywords

Comments

A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of its steps.
Rows 0 and 1 have one term each; row n has n-1 terms (n >= 2).
Row sums yield A002212.

Examples

			T(4,1)=4 because we have (UDUDU)UDD, (UDUDU)UDL, U(UDUDU)DD and U(UDUDU)DL (the subwords UDUDU are shown between parentheses).
Triangle starts
    1;
    1;
    3;
    9,  1;
   31,  4,  1;
  113, 19,  4,  1;
		

Crossrefs

Programs

  • Maple
    C:=z->(1-sqrt(1-4*z))/2/z: G:=C(z*(1+z-t*z)/(1-t*z)): Gser:=simplify(series(G,z=0,15)): for n from 0 to 12 do P[n]:=sort(coeff(Gser,z,n)) od: 1; 1; for n from 2 to 12 do seq(coeff(P[n],t,j),j=0..n-2) od; # yields sequence in triangular form

Formula

T(n,0) = A052709(n+1).
Sum_{k=0..n-2} k*T(n,k) = A026376(n-2).
G.f.: G = G(t,z) satisfies z(1 + z - tz)G^2 - (1 - tz)G + 1 - tz = 0. G = C((1+z-tz)/(1-tz)), where C(z) = (1 - sqrt(1 - 4z))/(2z) is the Catalan function.

A306519 Expansion of 2/(1 + 2*x + sqrt(1 - 4*x*(1 + x))).

Original entry on oeis.org

1, 0, 2, 4, 16, 56, 216, 848, 3424, 14080, 58816, 248832, 1064064, 4591744, 19970432, 87448832, 385226240, 1705979904, 7590632448, 33916934144, 152128126976, 684702330880, 3091429158912, 13997970530304, 63550155145216, 289216809762816, 1319185060069376, 6029646893252608
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 21 2019

Keywords

Comments

Inverse binomial transform of A001003.

Crossrefs

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[2/(1 + 2 x + Sqrt[1 - 4 x (1 + x)]), {x, 0, nmax}], x]
    Table[Sum[(-1)^(n - k) Binomial[n, k] Hypergeometric2F1[1 - k, -k, 2, 2], {k, 0, n}], {n, 0, 27}]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A001003(k).
a(n) ~ 2^(n - 1/4) * (1 + sqrt(2))^(n - 1/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 23 2019
D-finite with recurrence: (n+1)*a(n) +3*(-n+1)*a(n-1) +2*(-4*n+5)*a(n-2) +4*(-n+2)*a(n-3)=0. - R. J. Mathar, Jan 25 2020

A382885 G.f. A(x) satisfies A(x) = 1/( 1 - x * (1+x) * A(x) )^3.

Original entry on oeis.org

1, 3, 18, 121, 900, 7110, 58598, 498153, 4336533, 38463732, 346368351, 3158325168, 29102914959, 270582713670, 2535191045652, 23913087584045, 226892934532149, 2164080724942155, 20737076963936828, 199542537271568802, 1927347504059464995, 18679645863925666721
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=3, s=1, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = ( 1 + x * (1+x) * A(x)^(4/3) )^3.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).
G.f.: B(x)^3, where B(x) is the g.f. of A365178.
Previous Showing 41-47 of 47 results.