A302922
Raw moments of a Fibonacci-geometric probability distribution.
Original entry on oeis.org
1, 6, 58, 822, 15514, 366006, 10361818, 342239862, 12918651034, 548600581686, 25885279045978, 1343513774912502, 76071145660848154, 4666162902628259766, 308236822886732856538, 21815861409181135034742, 1646982315540717414270874, 132109620398598537723816246
Offset: 0
a(0)=1 is the 0th raw moment of the distribution, which is the total probability.
a(1)=6 is the 1st raw moment, known as the mean of the distribution. It is the arithmetic average of integers following the distribution.
a(2)=58 is the 2nd raw moment. It is the arithmetic average of the squares of integers following the distribution.
-
Module[{max, r, g},
max = 17;
r = Range[0, max];
g[x_] := x^2/(4 - 2 x - x^2);
r! CoefficientList[Normal[Series[g[Exp[x]], {x, 0, max}]], x]
]
-
Vec(serlaplace(exp(2*x)/(4-2*exp(x)-exp(2*x)))) \\ Michel Marcus, Apr 17 2018
A306417
Number of self-conjugate set partitions of {1, ..., n}.
Original entry on oeis.org
1, 1, 0, 1, 1, 2, 7, 7, 46, 39, 321
Offset: 0
The a(3) = 1 through a(7) = 7 self-conjugate set partitions:
{{12}{3}} {{13}{24}} {{123}{4}{5}} {{135}{246}} {{13}{246}{57}}
{{13}{2}{45}} {{124}{35}{6}} {{15}{246}{37}}
{{13}{25}{46}} {{1234}{5}{6}{7}}
{{14}{2}{356}} {{124}{3}{56}{7}}
{{14}{236}{5}} {{134}{2}{5}{67}}
{{14}{25}{36}} {{14}{2}{3}{567}}
{{145}{26}{3}} {{14}{23}{57}{6}}
Cf.
A000110,
A000126,
A000296,
A001610,
A032032,
A052841,
A080107,
A169985,
A306416,
A324011,
A324012.
A316747
Stirling transform of (2*n)!.
Original entry on oeis.org
1, 2, 26, 794, 44810, 4050362, 536119946, 97759687034, 23495075990090, 7197163489723322, 2737224615568742666, 1265459307754418362874, 698926543187678223962570, 454516898016585094157146682, 343753040265700944173260034186, 299168865461564926143049346952314
Offset: 0
-
Table[Sum[StirlingS2[n, k]*(2*k)!, {k, 0, n}], {n, 0, 20}]
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (2*k)!*(exp(x)-1)^k/k!))) \\ Seiichi Manyama, May 20 2022
A330149
Expansion of e.g.f. exp(-x) / (1 + log(1 - x)).
Original entry on oeis.org
1, 0, 2, 7, 47, 368, 3494, 38673, 489341, 6966344, 110199090, 1917589771, 36402276107, 748629861016, 16580304397942, 393443385034069, 9958671117295737, 267824225078212336, 7626444798009902530, 229232204568273395919, 7252798333599466521575, 240948882537990850397536
Offset: 0
-
nmax = 21; CoefficientList[Series[Exp[-x]/(1 + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
A337564
Number of sequences of length 2*n covering an initial interval of positive integers and splitting into n maximal runs.
Original entry on oeis.org
1, 1, 6, 80, 1540, 38808, 1206744, 44595408, 1908389340, 92780281880, 5050066185736, 304196411024688, 20087958167374552, 1442953024024996400, 112007566256683719600, 9342904053303870936480, 833388624898522799682780, 79159669418651567937733080
Offset: 0
The a(0) = 1 through a(2) = 6 sequences:
() (1,1) (1,1,1,2)
(1,1,2,2)
(1,2,2,2)
(2,1,1,1)
(2,2,1,1)
(2,2,2,1)
The a(3) = 80 sequences:
212222 111121 122233 333112 211133
221222 111211 133222 333211 233111
222122 112111 222133 112233 331112
222212 121111 222331 113322 332111
122221 123333 331222 221133 111223
211222 133332 332221 223311 111322
221122 213333 122223 331122 221113
222112 233331 132222 332211 223111
112221 333312 222213 112223 311122
122211 333321 222231 113222 322111
211122 122333 312222 222113 111123
221112 133322 322221 222311 111132
111221 221333 112333 311222 211113
112211 223331 113332 322211 231111
122111 333122 211333 111233 311112
211112 333221 233311 111332 321111
A335461 has this as main diagonal n = 2*k.
A336108 is the version for compositions.
A337504 is the version for compositions and anti-runs.
A337505 is the version for anti-runs.
A000670 counts sequences covering an initial interval.
A005649 counts anti-runs covering an initial interval.
A124767 counts maximal runs in standard compositions.
A333769 gives run lengths in standard compositions.
A337504 counts compositions of 2*n with n maximal anti-runs.
A337565 gives anti-run lengths in standard compositions.
Cf.
A001700,
A003242,
A052841,
A060223,
A106351,
A106356,
A269134,
A325535,
A333489,
A333627,
A333755,
A335838.
-
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
Table[Length[Select[Join@@Permutations/@allnorm[2*n],Length[Split[#]]==n&]],{n,0,3}]
-
\\ here b(n) is A005649.
b(n) = {sum(k=0, n, stirling(n,k,2)*(k + 1)!)}
a(n) = {if(n==0, 1, b(n-1)*binomial(2*n-1,n-1))} \\ Andrew Howroyd, Dec 31 2020
A353774
Expansion of e.g.f. 1/(1 - (exp(x) - 1)^3).
Original entry on oeis.org
1, 0, 0, 6, 36, 150, 1260, 16926, 197316, 2286150, 32821020, 548528046, 9515702196, 174531124950, 3521913283980, 76969474578366, 1777400236160676, 43405229295464550, 1126972561394470140, 30949983774936839886, 893095888222540548756, 27035433957000465352950
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(exp(x)-1)^3)))
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (3*k)!*x^(3*k)/prod(j=1, 3*k, 1-j*x)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=6*sum(j=1, i, binomial(i, j)*stirling(j, 3, 2)*v[i-j+1])); v;
-
a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 2));
A302923
Raw half-moments of a Fibonacci-geometric probability distribution.
Original entry on oeis.org
3, 29, 411, 7757, 183003, 5180909, 171119931, 6459325517, 274300290843, 12942639522989, 671756887456251, 38035572830424077, 2333081451314129883, 154118411443366428269, 10907930704590567517371, 823491157770358707135437, 66054810199299268861908123
Offset: 1
a(1)=3 is half the first raw moment of the distribution. It is half the arithmetic average of integers following the distribution.
a(2)=29 is half the second raw moment. It is half the arithmetic average of the squares of integers following the distribution.
-
Module[{max, r, g, rawMoments},
max = 17;
r = Range[0, max];
g[x_] := x^2/(4 - 2 x - x^2);
rawMoments = r! CoefficientList[Normal[Series[g[Exp[x]], {x, 0, max}]], x];
Rest[rawMoments]/2
]
A302924
Central moments of a Fibonacci-geometric probability distribution.
Original entry on oeis.org
1, 0, 22, 210, 4426, 102330, 2906362, 95952570, 3622138906, 153816150810, 7257695358202, 376693381614330, 21328770664314586, 1308295248437904090, 86423208789970618042, 6116714829331037666490, 461779664078480243085466, 37040796099362864616022170
Offset: 0
a(0)=1 is the 0th central moment of the distribution, which is the total probability.
a(1)=0 is the 1st central moment, or the "mean about the mean". It is zero by definition of central moments.
a(2)=22 is the 2nd central moment, known as the variance or the square of the standard deviation. It measures how far integers following the distribution are from the mean by averaging the squares of their differences from the mean.
-
Module[{max, r, g, moments},
max = 17;
r = Range[0, max];
g[x_] := x^2/(4 - 2 x - x^2);
moments = r! CoefficientList[Normal[Series[g[Exp[x]], {x, 0, max}]], x];
Table[Sum[Binomial[n, k] moments[[k + 1]] (-6)^(n - k), {k, 0, n}], {n, 0, max}]
]
A302925
Central half-moments of a Fibonacci-geometric probability distribution.
Original entry on oeis.org
0, 11, 105, 2213, 51165, 1453181, 47976285, 1811069453, 76908075405, 3628847679101, 188346690807165, 10664385332157293, 654147624218952045, 43211604394985309021, 3058357414665518833245, 230889832039240121542733, 18520398049681432308011085
Offset: 1
a(1)=0 is half the 1st central moment of the distribution, or half the "mean about the mean". It is zero by definition of central moments.
a(2)=11 is half the 2nd central moment, or half the variance, or half the square of the standard deviation.
-
Module[{max, r, g, moments, centralMoments},
max = 17;
r = Range[0, max];
g[x_] := x^2/(4 - 2 x - x^2);
moments = r! CoefficientList[Normal[Series[g[Exp[x]], {x, 0, max}]], x];
centralMoments = Table[Sum[Binomial[n, k] moments[[k + 1]] (-6)^(n - k), {k, 0, n}], {n, 0, max}];
Rest[centralMoments]/2
]
A302926
Cumulants of a Fibonacci-geometric probability distribution.
Original entry on oeis.org
0, 6, 22, 210, 2974, 56130, 1324222, 37489410, 1238235454, 46740118530, 1984855550782, 93653819396610, 4860878501987134, 275227990564092930, 16882335978752910142, 1115211301788480951810, 78930528072274523870014, 5958837996496319756259330
Offset: 0
a(0)=0 is the 0th cumulant of the distribution. The 0th cumulant is always zero.
a(1)=6 is the 1st cumulant, which is always the mean.
a(2)=22 is the 2nd cumulant, which is always the variance.
-
Module[{max, r, g},
max = 17;
r = Range[0, max];
g[x_] := x^2/(4 - 2 x - x^2);
r! CoefficientList[Normal[Series[Log[g[Exp[x]]], {x, 0, max}]], x]
]
Comments