cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A071004 Binary expansion of AGM(1,sqrt(2)) where AGM(x,y) denote the arithmetic-geometric mean of (x,y).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Benoit Cloitre, Aug 17 2002

Keywords

Crossrefs

Cf. A053004.

Programs

A248589 Decimal expansion of I, a constant appearing (as I^2) in the asymptotic variance of the area of the convex hull of random points in the unit square.

Original entry on oeis.org

1, 0, 6, 1, 8, 2, 4, 1, 3, 6, 4, 9, 0, 9, 6, 9, 6, 6, 2, 8, 0, 5, 3, 7, 8, 2, 8, 7, 3, 9, 8, 9, 4, 7, 1, 3, 1, 0, 0, 5, 5, 5, 9, 6, 4, 4, 7, 3, 2, 8, 8, 9, 2, 1, 2, 0, 4, 0, 5, 0, 1, 5, 1, 8, 3, 3, 8, 9, 8, 3, 3, 4, 5, 5, 6, 1, 2, 1, 1, 6, 1, 2, 4, 1, 3, 6, 9, 0, 0, 1, 0, 4, 2, 5, 9, 4, 5, 9, 0, 2
Offset: 1

Views

Author

Jean-François Alcover, Oct 09 2014

Keywords

Examples

			1.061824136490969662805378287398947131005559644732889212...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.1 Geometric probability constants, p. 481.

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[2]*Pi^2/Gamma[1/4]^2, 10, 100][[1]]
  • PARI
    sqrt(2)*Pi^2/gamma(1/4)^2 \\ G. C. Greubel, Jun 02 2017

Formula

I = sqrt(Pi/8)*(2-integral_{1..infinity} (sqrt(1+s^2)-s)*s^(-3/2) ds).
I = sqrt(Pi/2)*A053004, where A053004 is the arithmetic-geometric mean of 1 and sqrt(2).
I = Pi^(3/2)/(4*A085565), where A085565 is the lemniscate constant A.
I = sqrt(2)*Pi^2/Gamma(1/4)^2.

A269430 Decimal expansion of (1 + Pi)/2.

Original entry on oeis.org

2, 0, 7, 0, 7, 9, 6, 3, 2, 6, 7, 9, 4, 8, 9, 6, 6, 1, 9, 2, 3, 1, 3, 2, 1, 6, 9, 1, 6, 3, 9, 7, 5, 1, 4, 4, 2, 0, 9, 8, 5, 8, 4, 6, 9, 9, 6, 8, 7, 5, 5, 2, 9, 1, 0, 4, 8, 7, 4, 7, 2, 2, 9, 6, 1, 5, 3, 9, 0, 8, 2, 0, 3, 1, 4, 3, 1, 0, 4, 4, 9, 9, 3, 1, 4, 0, 1, 7, 4, 1, 2, 6, 7, 1, 0, 5, 8, 5, 3, 3, 9
Offset: 1

Views

Author

Jani Melik, Feb 26 2016

Keywords

Examples

			2.0707963267948966192313216916397514420985846996875529...
		

Crossrefs

Programs

  • PARI
    (1 + Pi)/2 \\ Altug Alkan, Apr 07 2016
  • Sage
    N((1+pi)/2, digits=110)
    

Formula

Equals A096444 + 1 or A019669 + 1/2.
Equals Sum_{k>=0} 2^k/binomial(2*k+2,k). - Amiram Eldar, Jun 30 2020

A275322 Decimal expansion of AGM(1, sqrt(2))^2/Pi.

Original entry on oeis.org

4, 5, 6, 9, 4, 6, 5, 8, 1, 0, 4, 4, 4, 6, 3, 6, 2, 5, 3, 7, 4, 9, 6, 6, 6, 2, 2, 5, 4, 7, 6, 8, 3, 3, 3, 6, 6, 1, 1, 7, 6, 7, 7, 3, 0, 0, 1, 4, 8, 3, 1, 5, 0, 8, 3, 9, 4, 3, 6, 2, 2, 4, 7, 2, 6, 7, 4, 8, 4, 3, 5, 8, 0, 7, 0, 8, 0, 5, 3, 8, 5, 5
Offset: 0

Views

Author

Dimitris Valianatos, Jul 23 2016

Keywords

Comments

Conjecture: Equals Product_{n odd} (n/(n+2) if n == 1 (mod 4), (n+2)/n otherwise) = (1/3) * (5/3) * (5/7) * (9/7) * (9/11) * (13/11) * (13/15) * (17/15) * (17/19) * (21/19) * (21/23) * (25/23) * (25/27) * ...

Examples

			0.45694658104446362537496662254768...
		

Crossrefs

Cf. A053004 (AGM(1, sqrt(2))).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 8*Pi(R)^2/Gamma(1/4)^4; // G. C. Greubel, Oct 07 2018
  • Maple
    evalf(GaussAGM(1,sqrt(2))^2/Pi,100); # Muniru A Asiru, Oct 08 2018
  • Mathematica
    First@ RealDigits@ N[ArithmeticGeometricMean[1, Sqrt[2]]^2/Pi, 120] (* Michael De Vlieger, Jul 26 2016 *)
  • PARI
    agm(1, sqrt(2)) ^ 2 / Pi
    
  • PARI
    8*Pi^2/gamma(1/4)^4 \\ Altug Alkan, Oct 08 2018
    

Formula

Equals 8*Pi^2/Gamma(1/4)^4 = 4*Gamma(3/4)^2/Gamma(1/4)^2. - Vaclav Kotesovec, Sep 22 2016

A172084 Decimal expansion of the constant x that satisfies Arithmetic-Geometric-Mean(3,x) = Pi.

Original entry on oeis.org

3, 2, 8, 6, 4, 5, 0, 5, 5, 2, 7, 7, 9, 4, 1, 0, 4, 2, 2, 8, 7, 8, 2, 5, 7, 1, 9, 3, 7, 7, 2, 9, 2, 9, 0, 6, 5, 3, 1, 4, 7, 4, 4, 5, 2, 1, 4, 0, 2, 6, 7, 4, 2, 2, 4, 4, 0, 3, 0, 5, 5, 1, 8, 7, 7, 4, 4, 6, 8, 3, 6, 1, 9, 7, 8, 8, 3, 3, 1, 8, 5, 4, 4, 5, 7, 7, 3, 0, 7, 8, 8, 9, 8, 1, 1, 8, 9, 6, 0, 0, 4, 9, 3, 1, 5
Offset: 1

Views

Author

Gerd Lamprecht (gerdlamprecht(AT)googlemail.com), Jan 25 2010

Keywords

Examples

			AGM(3,3.28645055277941042287...) = Pi = A000796.
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x /. FindRoot[ArithmeticGeometricMean[3, x] == Pi, {x, 4}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, May 25 2023 *)
  • PARI
    solve(x=3,4,agm(3,x)-Pi) \\ Charles R Greathouse IV, Mar 03 2016
Previous Showing 11-15 of 15 results.