cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A053257 Coefficients of the '5th-order' mock theta function f_1(q).

Original entry on oeis.org

1, 0, 1, -1, 1, -1, 2, -2, 1, -1, 2, -2, 2, -2, 2, -3, 3, -2, 3, -4, 4, -4, 4, -5, 5, -4, 5, -6, 6, -6, 7, -8, 7, -7, 8, -9, 10, -9, 10, -12, 11, -11, 13, -14, 14, -15, 16, -17, 17, -16, 19, -21, 20, -21, 23, -25, 25, -25, 27, -29, 30, -30, 32, -35, 35, -35, 39, -41, 41, -43, 45, -49, 50, -49, 53, -57, 58, -59, 63, -67, 68
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

References

  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355.
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 19, 22.

Crossrefs

Other '5th-order' mock theta functions are at A053256, A053258, A053259, A053260, A053261, A053262, A053263, A053264, A053265, A053266, A053267.

Programs

  • Mathematica
    Series[Sum[q^(n^2+n)/Product[1+q^k, {k, 1, n}], {n, 0, 9}], {q, 0, 100}]
    nmax = 100; CoefficientList[Series[Sum[x^(k^2+k) / Product[1+x^j, {j, 1, k}], {k, 0, Floor[Sqrt[nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 15 2019 *)

Formula

G.f.: f_1(q) = Sum_{n>=0} q^(n^2+n)/((1+q)(1+q^2)...(1+q^n)).
Consider partitions of n into parts differing by at least 2 and with smallest part at least 2. a(n) is the number of them with largest part even minus number with largest part odd.
a(n) ~ (-1)^n * sqrt(phi) * exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 15 2019

A053259 Coefficients of the '5th-order' mock theta function phi_1(q).

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 3, 4, 2, 2, 4, 4, 3, 3, 4, 4, 4, 3, 4, 5, 4, 4, 5, 5, 4, 4, 5, 6, 5, 4, 6, 7, 5, 5, 6, 7, 6, 6, 7, 7, 7, 6, 8, 9, 7, 7, 9
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

References

  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355.
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 19, 22, 25.

Crossrefs

Other '5th-order' mock theta functions are at A053256, A053257, A053258, A053260, A053261, A053262, A053263, A053264, A053265, A053266, A053267.

Programs

  • Mathematica
    Series[Sum[q^(n+1)^2 Product[1+q^(2k-1), {k, 1, n}], {n, 0, 9}], {q, 0, 100}]
    nmax = 100; CoefficientList[Series[Sum[x^((k+1)^2) * Product[1+x^(2*j-1), {j, 1, k}], {k, 0, Floor[Sqrt[nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 12 2019 *)

Formula

G.f.: phi_1(q) = Sum_{n>=0} q^(n+1)^2 (1+q)(1+q^3)...(1+q^(2n-1)).
a(n) is the number of partitions of n into odd parts such that each occurs at most twice, the largest part is unique and if k occurs as a part then all smaller positive odd numbers occur.
a(n) ~ exp(Pi*sqrt(n/30)) / (2*5^(1/4)*sqrt(phi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 12 2019

A376580 G.f.: Sum_{k>=0} x^(k^2) * Product_{j=1..k} (1 + x^(2*j-1))^2.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 2, 4, 3, 3, 3, 3, 4, 4, 5, 5, 7, 9, 7, 8, 9, 9, 10, 11, 12, 13, 14, 15, 18, 17, 19, 24, 23, 25, 27, 28, 31, 32, 33, 37, 40, 42, 44, 47, 52, 54, 59, 62, 67, 75, 75, 80, 87, 90, 95, 102, 109, 114, 119, 127, 134, 142, 150, 159, 171, 178, 187, 199, 211
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 29 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=100; CoefficientList[Series[Sum[x^(k^2)*Product[1+x^(2*j-1), {j, 1, k}]^2, {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ c * A376621^sqrt(n) / sqrt(n), where c = 1/(2*sqrt(3 - 4*sinh(arcsinh(3^(3/2)/2) / 3) / sqrt(3))) = 0.390989767113799449629...
a(n) ~ c * A376542(n), where c = (108 + 12*sqrt(93))^(1/3)/3 - 4/(108 + 12*sqrt(93))^(1/3) = 1.364655607... is the real root of the equation c*(4 + c^2) = 8.
a(n) ~ c * A369557(n), where c = A347178 = -sinh(log((-3*sqrt(3) + sqrt(31))/2)/3) / sqrt(3) = 0.3411639019... is the real root of the equation 2*c*(1 + 4*c^2) = 1.
a(n) ~ A376631(n) * (A376621/A376660)^sqrt(n).

A376631 G.f.: Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} (1 + x^(2*j)).

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 2, 0, 3, 0, 2, 1, 3, 1, 3, 1, 2, 3, 2, 3, 2, 4, 1, 5, 2, 5, 2, 6, 1, 7, 2, 7, 3, 6, 4, 7, 5, 6, 7, 6, 7, 7, 9, 5, 11, 5, 12, 6, 14, 5, 15, 6, 16, 7, 17, 7, 18, 9, 18, 11, 19, 12, 20, 14, 19, 17, 19, 19, 20, 23, 18, 27, 18, 29, 20, 32, 19
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k*(k+1)/2)*Product[1+x^(2*j), {j, 1, k}], {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^(2*k))*x^k]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[2*nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

G.f.: Sum_{k>=0} Product_{j=1..k} (x^j + x^(3*j)).
a(n) ~ c * A376660^sqrt(n) / sqrt(n), where c = 1/(2*sqrt(3 - 4*sinh(arcsinh(3^(3/2)/2) / 3) / sqrt(3))) = 0.39098976711379944962936707496887239986756106886318...
a(n) ~ A376580(n) * (A376660/A376621)^sqrt(n).

A376630 G.f.: Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} (1 + x^(2*j-1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 2, 2, 0, 1, 2, 2, 1, 1, 2, 3, 2, 1, 3, 2, 2, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 5, 5, 5, 4, 4, 7, 7, 5, 6, 8, 7, 7, 6, 8, 10, 8, 8, 10, 11, 9, 10, 12, 12, 11, 12, 14, 14, 13, 13, 16, 17, 15, 17, 18, 18, 19, 19, 20, 21, 22, 22, 24, 24, 25, 26, 27, 28, 29, 30
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k*(k+1)/2)*Product[1+x^(2*j-1), {j, 1, k}], {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^(2*k - 1))*x^k]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[2*nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

G.f.: Sum_{k>=0} Product_{j=1..k} (x^j + x^(3*j-1)).
a(n) ~ c * A376660^sqrt(n) / sqrt(n), where c = sqrt(cosh(arccosh(sqrt(31)/2) / 3))/31^(1/4) = 0.456748282933947534736955792823221857...

A376628 G.f.: Sum_{k>=0} x^(k*(k+1)) / Product_{j=1..k} (1 - x^(2*j-1)).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 7, 8, 10, 10, 12, 14, 15, 17, 19, 21, 23, 27, 29, 31, 37, 39, 43, 49, 52, 58, 64, 70, 76, 84, 92, 99, 111, 119, 129, 143, 153, 167, 183, 197, 213, 233, 251, 271, 295, 317, 343, 372, 400, 430, 466, 500, 538, 582, 622, 670
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=100; CoefficientList[Series[Sum[x^(k*(k+1))/Product[1-x^(2*j-1), {j, 1, k}], {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=0} Product_{j=1..k} x^(2*j)/(1 - x^(2*j-1)).
a(n) ~ exp(Pi*sqrt(n/6)) / (2^(5/2) * sqrt(n)).
Conjectural g.f.: (1 + q * nu(-q))/(1 + q) = 1 + Sum_{k >= 0} q^(k+2)*Product_{j = 1..k} 1 + q^(2*j+1), where nu(q) is the g.f. of A053254. - Peter Bala, Jan 03 2025

A376629 G.f.: Sum_{k>=0} x^(k*(k+1)) * Product_{j=1..k} (1 + x^(2*j-1)).

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 2, 2, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 3, 3, 1, 3, 3, 3, 2, 2, 3, 3, 3, 2, 4, 3, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, 4, 6, 6, 4, 6, 5, 7, 6, 5, 7, 7, 6, 6, 8, 7, 7, 7, 9, 8
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k*(k+1))*Product[1+x^(2*j-1), {j, 1, k}], {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^(2*k - 1))*x^(2*k)]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

G.f.: Sum_{k>=0} Product_{j=1..k} (x^(2*j) + x^(4*j-1)).
a(n) ~ exp(Pi*sqrt(n/30)) / (2*5^(1/4)*sqrt(n)).

A259551 Expansion of f(x^2, x^3) * f(-x^4, -x^6) / f(-x^2) in powers of x where f(,) is the Ramanujan general theta function.

Original entry on oeis.org

1, 0, 2, 1, 2, 1, 2, 1, 3, 2, 4, 4, 5, 4, 6, 5, 7, 6, 9, 8, 11, 11, 13, 13, 17, 15, 20, 19, 23, 23, 27, 27, 33, 33, 38, 39, 45, 45, 53, 54, 62, 63, 73, 74, 84, 86, 97, 100, 112, 115, 130, 134, 148, 154, 170, 176, 195, 202, 222, 232, 255, 264, 290, 301, 329
Offset: 0

Views

Author

Michael Somos, Jun 30 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).

Examples

			G.f. = 1 + 2*x^2 + x^3 + 2*x^4 + x^5 + 2*x^6 + x^7 + 3*x^8 + 2*x^9 + ...
G.f. = 1/q + 2*q^239 + q^359 + 2*q^479 + q^599 + 2*q^719 + q^839 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 23, 9th equation.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{ 0, -2, -1, 1, 1, 1, -1, -2, 0, 1}[[Mod[k, 10, 1]]], {k, n}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ QPochhammer[x^5] QPochhammer[ -x^2, x^5] QPochhammer[ -x^3, x^5] / (QPochhammer[ x^2, x^10]  QPochhammer[ x^8, x^10]), {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 1, 0, -2, -1, 1, 1, 1, -1, -2, 0][k%10 + 1]), n))};

Formula

Expansion of f(x^2, x^3) * G(x^2) in powers of x where f(,) is the Ramanujan general theta function and G() is a Rogers-Ramanujan function.
Euler transform of period 10 sequence [ 0, 2, 1, -1, -1, -1, 1, 2, 0, -1, ...].
G.f.: Product_{k>0} (1 - x^(5*k)) * (1 + x^(5*k - 3)) * (1 + x^(5*k - 2)) / ((1 - x^(10*k - 8)) * (1 - x^(10*k - 2))).
G.f.: (Sum_{k in Z} x^(k*(5*k + 1)/2)) / (Product_{k in Z} 1 - x^abs(10*k + 2)). - Michael Somos, Jul 09 2015
(-1)^n * A053258(n) + A053266(n) = a(n) unless n=0. Michael Somos, Jul 09 2015
A259910(n) = 2*A255065(n) + a(n). Michael Somos, Jul 09 2015

A260971 Expansion of phi_0(-q) in powers of q where phi_0() is a 5th-order mock theta function.

Original entry on oeis.org

1, -1, 1, 0, 1, -1, 0, -1, 1, -1, 1, 0, 1, -1, 1, -1, 1, -2, 1, -1, 1, -1, 1, -1, 2, -2, 2, -1, 2, -2, 1, -2, 2, -2, 2, -2, 2, -3, 2, -2, 3, -3, 3, -2, 3, -3, 3, -3, 3, -4, 4, -3, 4, -4, 3, -4, 4, -5, 4, -4, 5, -5, 5, -5, 6, -6, 5, -5, 6, -6, 6, -6, 7, -7, 7
Offset: 0

Views

Author

Michael Somos, Aug 06 2015

Keywords

Examples

			G.f. = 1 - x + x^2 + x^4 - x^5 - x^7 + x^8 - x^9 + x^10 + x^12 - x^13 + ...
G.f. = q^-1 - q^119 + q^239 + q^479 - q^599 - q^839 + q^959 - q^1079 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[Sum[(-x)^( k^2)*Product[1 - x^(2*j - 1), {j, 1, k}], {k, 0, Sqrt[n]}], {x, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Aug 01 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n), (-x)^k^2 * prod(i=1, k, 1 - x^(2*i - 1), 1 + x * O(x^(n - k^2)))), n))};

Formula

G.f.: Sum_{k >= 0} (-x)^n^2 * (1 - x) * (1 - x^3) * ... * (1 - x^(2*k-1)).
a(n) = (-1)^n * A053258(n) = 2 * A053264(n) - A053262(n).
a(n) ~ (-1)^n * sqrt(phi) * exp(Pi*sqrt(n/30)) / (2*5^(1/4)*sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 15 2019
Previous Showing 11-19 of 19 results.