cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A317885 Number of series-reduced free pure achiral multifunctions with one atom and n positions.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 3, 4, 7, 9, 14, 21, 32, 45, 69, 103, 153, 224, 338, 500, 746, 1107, 1645, 2447, 3652, 5413, 8052, 11993, 17834, 26500, 39447, 58655, 87240, 129772, 193001, 287034, 427014, 635048, 944501, 1404910, 2089633, 3107864, 4622670, 6875533
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2018

Keywords

Comments

A series-reduced free pure achiral multifunction (SRAM) is either (case 1) the leaf symbol "o", or (case 2) a nonempty and non-unitary expression of the form h[g, ..., g] where h and g are SRAMs. The number of positions in a SRAM is the number of brackets [...] plus the number of o's.

Examples

			The a(10) = 7 SRAMs:
  o[o[o,o],o[o,o]]
  o[o,o][o,o][o,o]
  o[o,o][o,o,o,o,o]
  o[o,o,o][o,o,o,o]
  o[o,o,o,o][o,o,o]
  o[o,o,o,o,o][o,o]
  o[o,o,o,o,o,o,o,o]
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n==1,1,Sum[a[k]*Sum[a[d],{d,Most[Divisors[n-k-1]]}],{k,n-2}]];
    Array[a,12]
  • PARI
    seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*sum(k=2, n-2, subst(p + O(x^(n\k+1)), x, x^k)) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
    
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, if(dAndrew Howroyd, Aug 19 2018

Formula

a(1) = 1; a(n > 1) = Sum_{0 < k < n - 1} a(k) * Sum_{d|(n - k - 1), d < n - k - 1} a(d).

Extensions

Terms a(17) and beyond from Andrew Howroyd, Aug 19 2018

A259065 E.g.f.: Series_Reversion( 5*x - 4*x*exp(x) ).

Original entry on oeis.org

1, 8, 204, 8656, 514100, 39254904, 3663341724, 404021632928, 51413304278916, 7414832746025800, 1195170934203398636, 212923233266007511152, 41545466670049713766356, 8811212141812890158250776, 2018230889016461893216938300, 496523506149784085749952075584, 130578628540561635331879674437156
Offset: 1

Views

Author

Paul D. Hanna, Jun 17 2015

Keywords

Examples

			E.g.f.: A(x) = x + 8*x^2/2! + 204*x^3/3! + 8656*x^4/4! + 514100*x^5/5! +...
where A(5*x - 4*x*exp(x)) = x.
Also we have the related infinite series.
O.g.f.: F(x) = x + 8*x^2 + 204*x^3 + 8656*x^4 + 514100*x^5 + 39254904*x^6 +...
where F(x)/x = 1/5 + 4/(5-x)^2 + 4^2/(5-2*x)^3 + 4^3/(5-3*x)^4 + 4^4/(5-4*x)^5 +...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[5*x - 4*x*E^x, {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 19 2015 *)
  • PARI
    {a(n) = local(A=x); A = serreverse(5*x - 4*x*exp(x +x*O(x^n) )); n!*polcoeff(A,n)}
    for(n=1,20,print1(a(n),", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A = x+sum(m=1, n, Dx(m-1, 4^m*(exp(x+x*O(x^n))-1)^m * x^m/m!)); n!*polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A = x*exp(sum(m=1, n, Dx(m-1, 4^m*(exp(x+x*O(x^n))-1)^m * x^(m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))

Formula

O.g.f.: x * Sum_{n>=0} 4^n / (5 - n*x)^(n+1).
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) 4^n * (exp(x)-1)^n * x^n / n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) 4^n * (exp(x)-1)^n * x^(n-1) / n! ).
a(n) ~ (c/(5*exp(1)))^n * n^(n-1) / (sqrt(c+1) * (c-1)^(2*n-1)), where c = LambertW(5*exp(1)/4). - Vaclav Kotesovec, Jun 19 2015

A259066 E.g.f.: Series_Reversion( 6*x - 5*x*exp(x) ).

Original entry on oeis.org

1, 10, 315, 16520, 1212775, 114465780, 13204213435, 1800094703440, 283154358503295, 50478562633826300, 10057594831485171355, 2214859039031666012760, 534202513174577053611415, 140048168049127802257998820, 39652657811418543065286846075, 12058716801545122639605896216480
Offset: 1

Views

Author

Paul D. Hanna, Jun 17 2015

Keywords

Examples

			E.g.f.: A(x) = x + 10*x^2/2! + 315*x^3/3! + 16520*x^4/4! + 1212775*x^5/5! +...
where A(6*x - 5*x*exp(x)) = x.
Also we have the related infinite series.
O.g.f.: F(x) = x + 10*x^2 + 315*x^3 + 16520*x^4 + 1212775*x^5 +...
where F(x)/x = 1/6 + 5/(6-x)^2 + 5^2/(6-2*x)^3 + 5^3/(6-3*x)^4 + 5^4/(6-4*x)^5 +...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[6*x - 5*x*E^x, {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 19 2015 *)
  • PARI
    {a(n) = local(A=x); A = serreverse(6*x - 5*x*exp(x +x*O(x^n) )); n!*polcoeff(A,n)}
    for(n=1,20,print1(a(n),", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A = x + sum(m=1, n, Dx(m-1, 5^m*(exp(x+x*O(x^n))-1)^m * x^m/m!)); n!*polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A = x*exp(sum(m=1, n, Dx(m-1, 5^m*(exp(x+x*O(x^n))-1)^m * x^(m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))

Formula

O.g.f.: x * Sum_{n>=0} 5^n / (6 - n*x)^(n+1).
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) 5^n * (exp(x)-1)^n * x^n / n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) 5^n * (exp(x)-1)^n * x^(n-1) / n! ).
a(n) ~ (c/(6*exp(1)))^n * n^(n-1) / (sqrt(c+1) * (c-1)^(2*n-1)), where c = LambertW(6*exp(1)/5). - Vaclav Kotesovec, Jun 19 2015

A317853 a(1) = 1; a(n > 1) = Sum_{0 < k < n} (-1)^(n - k - 1) a(n - k) Sum_{d|k} a(d).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 5, 6, 11, 14, 23, 26, 51, 70, 114, 147, 237, 314, 516, 715, 1118, 1549, 2353, 3252, 5011, 7235, 10724, 15142, 22504, 32506, 47770, 69173, 100980, 146657, 212504, 308563, 448256, 658037, 946166, 1373739, 1988283, 2919185, 4197886, 6118850
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=If[n==1,1,Sum[(-1)^(n-k-1)*a[n-k]*Sum[a[d],{d,Divisors[k]}],{k,n-1}]];
    Array[a,50]

A305919 a(n) = n! * [x^n] 1/(2 - exp(x))^n.

Original entry on oeis.org

1, 1, 8, 99, 1704, 37625, 1014348, 32300359, 1186399952, 49376357109, 2296400723220, 118031059900523, 6643848377509368, 406471060412884753, 26856124898028246044, 1905791887135240982415, 144563460111417997403040, 11673024609379676114380877, 999663240630210837032231460
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 14 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(2 - Exp[x])^n, {x, 0, n}], {n, 0, 18}]
    Table[SeriesCoefficient[Sum[Binomial[n + k - 1, k] k! x^k/Product[1 - j x, {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 18}]
    Table[Sum[StirlingS2[n, k] Binomial[n + k - 1, k] k!, {k, 0, n}], {n, 0, 18}]

Formula

a(n) = [x^n] Sum_{k>=0} binomial(n+k-1,k)*k!*x^k/Product_{j=1..k} (1 - j*x).
a(n) = Sum_{k=0..n} Stirling2(n,k)*binomial(n+k-1,k)*k!.
a(n) ~ n! * c * ((1 + r)*(1 + 2*r))^n / sqrt(n), where r = (-1 + 1/(-1 + LambertW(2*exp(1))))/2 = 0.833964643008471735434624869020826957702396269585... is the root of the equation (2 + 1/r) * (1 + r*LambertW(-exp(-1/r)/r)) = 1 and c = 1/sqrt(2*Pi*(1 + LambertW(2*exp(1)))) = 0.258877607195571655640738032164006... Equivalently, a(n) ~ LambertW(2*exp(1))^n * n^n / (sqrt(1 + LambertW(2*exp(1))) * 2^n * exp(n) * (LambertW(2*exp(1)) - 1)^(2*n)). - Vaclav Kotesovec, Dec 15 2019, updated Mar 17 2024

A317676 Triangle whose n-th row lists in order all e-numbers of free pure symmetric multifunctions (with empty expressions allowed) with one atom and n positions.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 16, 7, 10, 12, 13, 21, 25, 27, 32, 36, 64, 81, 128, 256, 11, 14, 17, 18, 28, 33, 35, 41, 45, 49, 75, 93, 100, 125, 144, 145, 169, 216, 243, 279, 441, 512, 625, 729, 1024, 1296, 2048, 2187, 4096, 6561, 8192, 16384, 65536, 524288, 8388608, 9007199254740992
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Comments

Given a positive integer n we construct a unique free pure symmetric multifunction e(n) by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)].
Every free pure symmetric multifunction (with empty expressions allowed) f with one atom and n positions has a unique e-number n such that e(n) = f, and vice versa, so this sequence is a permutation of the positive integers.

Examples

			Triangle begins:
  1
  2
  3   4
  5   6   8   9  16
  7  10  12  13  21  25  27  32  36  64  81 128 256
Corresponding triangle of free pure symmetric multifunctions (with empty expressions allowed) begins:
  o,
  o[],
  o[][], o[o],
  o[][][], o[o][], o[o[]], o[][o], o[o,o].
		

Crossrefs

Programs

  • Mathematica
    maxUsing[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{maxUsing[h],Union[Sort/@Tuples[maxUsing/@p]]}],{p,IntegerPartitions[g]}]]];
    radQ[n_]:=And[n>1,GCD@@FactorInteger[n][[All,2]]==1];
    Clear[rad];rad[n_]:=rad[n]=If[n==0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]];
    ungo[x_?AtomQ]:=1;ungo[h_[g___]]:=rad[ungo[h]]^(Times@@Prime/@ungo/@{g});
    Table[Sort[ungo/@maxUsing[n]],{n,5}]

A259062 E.g.f.: Series_Reversion( -x + 2*x*exp(-x) ).

Original entry on oeis.org

1, 4, 42, 728, 17630, 548532, 20852370, 936655792, 48540537702, 2850727359500, 187107038833946, 13572973331551944, 1078343465147156910, 93119965280416893028, 8684514946963752624930, 869915871265946242868576, 93146889134541855185069942, 10617155946603647157142073916
Offset: 1

Views

Author

Paul D. Hanna, Jun 18 2015

Keywords

Examples

			E.g.f.: A(x) = x + 4*x^2/2! + 42*x^3/3! + 728*x^4/4! + 17630*x^5/5! +...
where A(-x + 2*x*exp(-x)) = x.
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[-x + 2*x*E^(-x), {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 19 2015 *)
  • PARI
    {a(n) = local(A=x); A = serreverse(-x + 2*x*exp(-x +x*O(x^n) )); n!*polcoeff(A, n)}
    for(n=1, 20, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, 2^m*(1-exp(-x+x*O(x^n)))^m*x^m/m!)); n!*polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, 2^m*(1-exp(-x+x*O(x^n)))^m*x^(m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))

Formula

E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) 2^n * (1 - exp(-x))^n * x^n / n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) 2^n * (1 - exp(-x))^n * x^(n-1) / n! ).
a(n) ~ (1-c) * n^(n-1) / (sqrt(1+c) * (c + 1/c - 2)^n * exp(n)), where c = LambertW(exp(1)/2) = 0.685076942154593946... . - Vaclav Kotesovec, Jun 19 2015

A304485 Regular triangle where T(n,k) is the number of inequivalent colorings of free pure symmetric multifunctions (with empty expressions allowed) with n positions and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 4, 0, 1, 12, 23, 7, 0, 1, 20, 81, 73, 12, 0, 1, 30, 209, 407, 206, 19, 0, 1, 42, 451, 1566, 1751, 534, 30, 0, 1, 56, 858, 4711, 9593, 6695, 1299, 45, 0, 1, 72, 1494, 11951, 39255, 51111, 23530, 3004, 67, 0, 1, 90, 2430, 26752, 130220, 278570, 245319, 77205, 6664, 97, 0
Offset: 1

Views

Author

Gus Wiseman, Aug 17 2018

Keywords

Comments

A free pure symmetric multifunction (with empty expressions allowed) f in EOME is either (case 1) a positive integer, or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where k >= 0, h is in EOME, each of the g_i for i = 1, ..., k is in EOME, and for i < j we have g_i <= g_j under a canonical total ordering of EOME, such as the Mathematica ordering of expressions.
T(n,k) is also the number of inequivalent colorings of orderless Mathematica expressions with n positions and k leaves.

Examples

			Inequivalent representatives of the T(5,3) = 23 Mathematica expressions:
  1[][1,1]  1[1,1][]  1[1][1]  1[1[1]]  1[1,1[]]
  1[][1,2]  1[1,2][]  1[1][2]  1[1[2]]  1[1,2[]]
  1[][2,2]  1[2,2][]  1[2][1]  1[2[1]]  1[2,1[]]
  1[][2,3]  1[2,3][]  1[2][2]  1[2[2]]  1[2,2[]]
                      1[2][3]  1[2[3]]  1[2,3[]]
Triangle begins:
    1
    1    0
    1    2    0
    1    6    4    0
    1   12   23    7    0
    1   20   81   73   12    0
    1   30  209  407  206   19    0
    1   42  451 1566 1751  534   30    0
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(p=O(x)); for(n=1, n, p = x*sv(1) + x*p*sExp(p)); p}
    T(n)={my(v=Vec(InequivalentColoringsSeq(sFuncSubst(cycleIndexSeries(n), i->sv(i)*y^i)))); vector(n, n, Vecrev(v[n]/y, n))}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 01 2021

Extensions

Terms a(37) and beyond from Andrew Howroyd, Jan 01 2021

A317659 Regular triangle where T(n,k) is the number of distinct free pure symmetric multifunctions (with empty expressions allowed) with one atom, n positions, and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 17, 7, 1, 0, 1, 15, 43, 33, 9, 1, 0, 1, 21, 92, 118, 55, 11, 1, 0, 1, 28, 174, 341, 252, 82, 13, 1, 0, 1, 36, 302, 845, 935, 463, 115, 15, 1, 0, 1, 45, 490, 1864, 2921, 2103, 769, 153, 17, 1, 0, 1, 55, 755
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Examples

			The T(5,3) = 5 expressions are o[o[o]], o[o,o[]], o[][o,o], o[o][o], o[o,o][].
Triangle begins:
    1
    1    0
    1    1    0
    1    3    1    0
    1    6    5    1    0
    1   10   17    7    1    0
    1   15   43   33    9    1    0
    1   21   92  118   55   11    1    0
    1   28  174  341  252   82   13    1    0
    1   36  302  845  935  463  115   15    1    0
    1   45  490 1864 2921 2103  769  153   17    1    0
    1   55  755 3755 7981 8012 4145 1187  197   19    1    0
		

Crossrefs

Programs

  • Mathematica
    maxUsing[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{maxUsing[h],Union[Sort/@Tuples[maxUsing/@p]]}],{p,IntegerPartitions[g]}]]];
    Table[Length[Select[maxUsing[n],Length[Position[#,"o"]]==k&]],{n,12},{k,n}]

A368584 Table read by rows: T(n, k) = A124320(n + 1, k) * A048993(n, k).

Original entry on oeis.org

1, 0, 2, 0, 3, 12, 0, 4, 60, 120, 0, 5, 210, 1260, 1680, 0, 6, 630, 8400, 30240, 30240, 0, 7, 1736, 45360, 327600, 831600, 665280, 0, 8, 4536, 216720, 2772000, 13305600, 25945920, 17297280, 0, 9, 11430, 956340, 20207880, 162162000, 575134560, 908107200, 518918400
Offset: 0

Views

Author

Peter Luschny, Jan 10 2024

Keywords

Examples

			Triangle starts:
  [0] [1]
  [1] [0, 2]
  [2] [0, 3,   12]
  [3] [0, 4,   60,    120]
  [4] [0, 5,  210,   1260,    1680]
  [5] [0, 6,  630,   8400,   30240,    30240]
  [6] [0, 7, 1736,  45360,  327600,   831600,   665280]
  [7] [0, 8, 4536, 216720, 2772000, 13305600, 25945920, 17297280]
		

Crossrefs

Cf. A124320 (rising factorial), A048993(Stirling2), A053492 (row sums), A213236 (alternating row sums), A001813 (main diagonal), A368583.

Programs

  • SageMath
    def Trow(n): return [rising_factorial(n+1, k)*stirling_number2(n, k) for k in range(n+1)]
    for n in range(7): print(Trow(n))
Previous Showing 21-30 of 30 results.