cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A354305 a(n) is the denominator of Sum_{k=0..n} (-1)^k / (k!)^2.

Original entry on oeis.org

1, 1, 4, 9, 192, 1800, 103680, 529200, 232243200, 8230118400, 1463132160000, 39833773056000, 20858412072960000, 1615657835151360000, 584619573580922880000, 1908495817772544000000, 29184209113159670169600000, 3953548328298349068288000000, 185476873609942457647104000000
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 0, 1/4, 2/9, 43/192, 403/1800, 23213/103680, 118483/529200, 51997111/232243200, 1842647621/8230118400, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k/(k!)^2, {k, 0, n}], {n, 0, 18}] // Denominator
    nmax = 18; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator
    Accumulate[Table[(-1)^k/(k!)^2,{k,0,20}]]//Denominator (* Harvey P. Dale, Apr 25 2023 *)

Formula

Denominators of coefficients in expansion of BesselJ(0,2*sqrt(x)) / (1 - x).

A373418 Triangle read by rows: T(n,k) is the number of permutations in symmetric group S_n with (n-k) fixed points and an odd number of non-fixed point cycles. Equivalent to the number of cycles of n items with cycle type defined by non-unity partitions of k <= n that contain an odd number of parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 3, 2, 0, 0, 6, 8, 6, 0, 0, 10, 20, 30, 24, 0, 0, 15, 40, 90, 144, 135, 0, 0, 21, 70, 210, 504, 945, 930, 0, 0, 28, 112, 420, 1344, 3780, 7440, 7420, 0, 0, 36, 168, 756, 3024, 11340, 33480, 66780, 66752, 0, 0, 45, 240, 1260, 6048, 28350, 111600, 333900, 667520, 667485
Offset: 0

Views

Author

Keywords

Comments

a(n) + A343417(n) = A098825(n) = partial derangement "rencontres" triangle.
a(n) - A343417(n) = (k-1) * binomial(n,k) = A127717(n-1,k-1).
Difference of 2nd and 1st leading diagonals (n > 0):
T(n,n-1) - T(n,n) = 0,-1,1,2,6,9,15,20,28,35,45,54,...
= (0-1) + (2+1) + (4+3) + (6+5) + (8+7) + (10+9) + ...
Cf. A084265(n) with 2 terms 0,-1 prepended (moving its offset from 0 to -2).

Examples

			Triangle begins:
   n: {k<=n}
   0: {0}
   1: {0, 0}
   2: {0, 0,  1}
   3: {0, 0,  3,   2}
   4: {0, 0,  6,   8,    6}
   5: {0, 0, 10,  20,   30,   24}
   6: {0, 0, 15,  40,   90,  144,   135}
   7: {0, 0, 21,  70,  210,  504,   945,    930}
   8: {0, 0, 28, 112,  420, 1344,  3780,   7440,   7420}
   9: {0, 0, 36, 168,  756, 3024, 11340,  33480,  66780,  66752}
  10: {0, 0, 45, 240, 1260, 6048, 28350, 111600, 333900, 667520, 667485}
T(n,0) = 0 because the sole permutation in S_n with n fixed points, namely the identity permutation, has 0 non-fixed point cycles, not an odd number.
T(n,1) = 0 because there are no permutations in S_n with (n-1) fixed points.
Example:
T(3,3) = 2 since S_3 contains 3 permutations with 0 fixed points and an odd number of non-fixed point cycles, namely the derangements (123) and (132).
Worked Example:
T(7,6) = 945 permutations in S_7 with 1 fixed point and an odd number of non-fixed point cycles;
T(7,6) = 945 possible 6- and (2,2,2)-cycles of 7 items.
N(n,y) = possible y-cycles of n items;
N(n,y) = (n!/(n-k)!) / (M(y) * s(y)).
y = partition of k<=n with q parts = (p_1, p_2, ..., p_i, ..., p_q) such that k = Sum_{i=1..q} p_i.
Or:
y = partition of k<=n with d distinct parts, each with multiplicity m_j = (y_1^m_1, y_2^m_2, ..., y_j^m_j, ..., y_d^m_d) such that k = Sum_{j=1..d} m_j*y_j.
M(y) = Product_{i=1..q} p_i = Product_{j=1..d} y_j^m_j.
s(y) = Product_{j=1..d} m_j! ("symmetry of repeated parts").
Note: (n!/(n-k)!) / s(y) = multinomial(n, {m_j}).
Therefore:
T(7,6) = N(7,y=(6)) + N(7,y=(2^3))
       = (7!/6) + (7!/(2^3)/3!)
       = 7! * (1/6 + 1/48)
       = 5040 * (3/16);
T(7,6) = 945.
		

Crossrefs

Cf. A373417 (even case), A373340 (row sums), A216779 (main diagonal).

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(expand(`if`(j>1, x^j, 1)*
          b(n-j, irem(t+signum(j-1), 2)))*binomial(n-1, j-1)*(j-1)!, j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
    seq(T(n), n=0..10);
  • Mathematica
    Table[Table[n!/(n-k)!/2 * (Sum[(-1)^j/j!, {j, 0, k}] - ((k - 1)/k!)),{k,1,n}], {n,1,10}]

Formula

T(n,k) = (n!/(n-k)!/2) * ((Sum_{j=0..k} (-1)^j/j!) + (k-1)/k!). Cf. Sum_{j=0..k} (-1)^j/j! = A053557(k) / A053556(k).

A354378 a(n) is the denominator of Sum_{k=0..n} (-1)^k / (2*k)!.

Original entry on oeis.org

1, 2, 24, 720, 8064, 3628800, 479001600, 87178291200, 20922789888000, 1280474741145600, 2432902008176640000, 1124000727777607680000, 620448401733239439360000, 403291461126605635584000000, 60977668922342772100300800000, 1569543549184562477137920000000
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 1/2, 13/24, 389/720, 4357/8064, 1960649/3628800, 258805669/479001600, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k/(2 k)!, {k, 0, n}], {n, 0, 15}] // Denominator
    nmax = 15; CoefficientList[Series[Cos[Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator
  • PARI
    a(n) = denominator(sum(k=0, n, (-1)^k/(2*k)!)); \\ Michel Marcus, May 24 2022

Formula

Denominators of coefficients in expansion of cos(sqrt(x)) / (1 - x).

A355266 Triangle read by rows, T(n, k) = (-1)^(n-k)*Bell(k)*Stirling1(n+1, k+1), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 6, 11, 12, 5, 24, 50, 70, 50, 15, 120, 274, 450, 425, 225, 52, 720, 1764, 3248, 3675, 2625, 1092, 203, 5040, 13068, 26264, 33845, 29400, 16744, 5684, 877, 40320, 109584, 236248, 336420, 336735, 235872, 110838, 31572, 4140
Offset: 0

Views

Author

Peter Luschny and Mélika Tebni, Jul 05 2022

Keywords

Examples

			Triangle T(n, k) begins:
[0]    1;
[1]    1,      1;
[2]    2,      3,     2;
[3]    6,     11,    12,      5;
[4]   24,     50,    70,     50,    15;
[5]  120,    274,   450,    425,   225,     52;
[6]  720,   1764,  3248,   3675,  2625,   1092,  203;
[7] 5040,  13068, 26264,  33845, 29400,  16744, 5684, 877;
		

Crossrefs

Cf. A002720 (row sums), A000166 (alternating row sums), A000110 (main diagonal), A000142 (column 0).

Programs

  • Maple
    T := (n, k) -> (-1)^(n-k)*combinat:-bell(k)*Stirling1(n+1, k+1):
    seq(seq(T(n, k), k = 0..n), n = 0..8);
  • Python
    from functools import cache
    @cache
    def b(n: int, k=0):
        return int(n < 1) or k * b(n - 1, k) + b(n - 1, k + 1)
    @cache
    def s(n: int) -> list[int]:
        if n == 0: return [1]
        row = [0] + s(n - 1)
        for k in range(1, n): row[k] = row[k] + (n - 1) * row[k + 1]
        return row
    def A355266_row(n):
        return [s * b(k - 1) for k, s in enumerate(s(n + 1))][1:]
    for n in range(9): print(A355266_row(n))

Formula

T(n, k) = A000110(k) * A130534(n, k).
Sum_{k=0..n} T(n, k) = n!*Laguerre(n, -1) = A002720(n).
Sum_{k=0..n} (-1)^k*T(n, k) = !n = n!*A053557(n)/A053556(n) = A000166(n).

A174458 Partial sums of A053519.

Original entry on oeis.org

1, 4, 19, 48, 645, 5346, 9989, 423680, 4936673, 22863284, 717864203, 10398234146, 14778845999, 2318706892436, 41349958502663, 67290481692176, 1273710986008283, 21639017114636720, 1870679510063123381
Offset: 0

Views

Author

Jonathan Vos Post, Mar 20 2010

Keywords

Comments

Partial sums of denominators of successive convergents to continued fraction 1+2/(3+3/(4+4/(5+5/(6+6/(7+7/(8+8/(9+9/10+...))))))). The subsequence of primes in this partial sum begins: 19, 1273710986008283.

Examples

			a(16) = 1 + 3 + 15 + 29 + 597 + 4701 + 4643 + 413691 + 4512993 + 17926611 + 695000919 + 9680369943 + 4380611853 + 2303928046437 + 39031251610227 + 25940523189513 + 1206420504316107 = 1273710986008283 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A053519(i).
Previous Showing 21-25 of 25 results.