cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A354138 a(n) is the numerator of Sum_{k=0..n} (-1)^k / (2*k)!.

Original entry on oeis.org

1, 1, 13, 389, 4357, 1960649, 258805669, 47102631757, 11304631621681, 691843455246877, 1314502564969066301, 607300185015708631061, 335229702128671164345673, 217899306383636256824687449, 32946375125205802031892742289, 848027998784883070051677094421
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 1/2, 13/24, 389/720, 4357/8064, 1960649/3628800, 258805669/479001600, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k/(2 k)!, {k, 0, n}], {n, 0, 15}] // Numerator
    nmax = 15; CoefficientList[Series[Cos[Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator
  • PARI
    a(n) = numerator(sum(k=0, n, (-1)^k/(2*k)!)); \\ Michel Marcus, May 24 2022

Formula

Numerators of coefficients in expansion of cos(sqrt(x)) / (1 - x).

A355266 Triangle read by rows, T(n, k) = (-1)^(n-k)*Bell(k)*Stirling1(n+1, k+1), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 6, 11, 12, 5, 24, 50, 70, 50, 15, 120, 274, 450, 425, 225, 52, 720, 1764, 3248, 3675, 2625, 1092, 203, 5040, 13068, 26264, 33845, 29400, 16744, 5684, 877, 40320, 109584, 236248, 336420, 336735, 235872, 110838, 31572, 4140
Offset: 0

Views

Author

Peter Luschny and Mélika Tebni, Jul 05 2022

Keywords

Examples

			Triangle T(n, k) begins:
[0]    1;
[1]    1,      1;
[2]    2,      3,     2;
[3]    6,     11,    12,      5;
[4]   24,     50,    70,     50,    15;
[5]  120,    274,   450,    425,   225,     52;
[6]  720,   1764,  3248,   3675,  2625,   1092,  203;
[7] 5040,  13068, 26264,  33845, 29400,  16744, 5684, 877;
		

Crossrefs

Cf. A002720 (row sums), A000166 (alternating row sums), A000110 (main diagonal), A000142 (column 0).

Programs

  • Maple
    T := (n, k) -> (-1)^(n-k)*combinat:-bell(k)*Stirling1(n+1, k+1):
    seq(seq(T(n, k), k = 0..n), n = 0..8);
  • Python
    from functools import cache
    @cache
    def b(n: int, k=0):
        return int(n < 1) or k * b(n - 1, k) + b(n - 1, k + 1)
    @cache
    def s(n: int) -> list[int]:
        if n == 0: return [1]
        row = [0] + s(n - 1)
        for k in range(1, n): row[k] = row[k] + (n - 1) * row[k + 1]
        return row
    def A355266_row(n):
        return [s * b(k - 1) for k, s in enumerate(s(n + 1))][1:]
    for n in range(9): print(A355266_row(n))

Formula

T(n, k) = A000110(k) * A130534(n, k).
Sum_{k=0..n} T(n, k) = n!*Laguerre(n, -1) = A002720(n).
Sum_{k=0..n} (-1)^k*T(n, k) = !n = n!*A053557(n)/A053556(n) = A000166(n).

A123438 Numbers k such that the denominator of k!/!k (= A000142(k)/A000166(k)) is prime.

Original entry on oeis.org

4, 5, 6, 7, 10, 11, 15, 16, 34, 44, 63, 66, 168, 427, 575, 928, 1094, 1218, 1363, 1713, 5278, 10814
Offset: 1

Views

Author

Ed Pegg Jr, Jul 11 2008

Keywords

Comments

That is, numbers k such that A053557(k) is prime. - Michel Marcus, Aug 28 2013

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^k/k!, {k, 0, n}]; Select[Range[100], PrimeQ[Numerator[a[#]]] &] (* G. C. Greubel, Oct 31 2017 *)
  • PARI
    isok(n) = isprime(numerator(sum(k=0, n, (-1)^k/k!))); \\ Michel Marcus, Aug 28 2013

Extensions

a(16)-a(20) from G. C. Greubel, Nov 01 2017
a(21)-a(22) from Michael S. Branicky, Dec 16 2024

A174458 Partial sums of A053519.

Original entry on oeis.org

1, 4, 19, 48, 645, 5346, 9989, 423680, 4936673, 22863284, 717864203, 10398234146, 14778845999, 2318706892436, 41349958502663, 67290481692176, 1273710986008283, 21639017114636720, 1870679510063123381
Offset: 0

Views

Author

Jonathan Vos Post, Mar 20 2010

Keywords

Comments

Partial sums of denominators of successive convergents to continued fraction 1+2/(3+3/(4+4/(5+5/(6+6/(7+7/(8+8/(9+9/10+...))))))). The subsequence of primes in this partial sum begins: 19, 1273710986008283.

Examples

			a(16) = 1 + 3 + 15 + 29 + 597 + 4701 + 4643 + 413691 + 4512993 + 17926611 + 695000919 + 9680369943 + 4380611853 + 2303928046437 + 39031251610227 + 25940523189513 + 1206420504316107 = 1273710986008283 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A053519(i).
Previous Showing 21-24 of 24 results.