cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A340955 Number of ways to write n as an ordered sum of 10 nonzero triangular numbers.

Original entry on oeis.org

1, 0, 10, 0, 45, 10, 120, 90, 210, 370, 297, 930, 570, 1620, 1480, 2220, 3375, 2940, 6085, 4590, 8981, 8370, 11430, 15100, 13890, 23832, 19155, 31940, 30195, 38520, 46890, 46440, 66550, 59400, 86355, 81532, 104220, 114390, 122410, 153450, 149490, 193440, 188010, 235350, 238840
Offset: 10

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; local r, t, d; r, t, d:= $0..2;
          if n=0 then `if`(k=0, 1, 0) else
          while t<=n do r:= r+b(n-t, k-1); t, d:= t+d, d+1 od; r fi
        end:
    a:= n-> b(n, 10):
    seq(a(n), n=10..54);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 54; CoefficientList[Series[(EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)) - 1)^10, {x, 0, nmax}], x] // Drop[#, 10] &

Formula

G.f.: (theta_2(sqrt(x)) / (2 * x^(1/8)) - 1)^10, where theta_2() is the Jacobi theta function.

A051611 Numbers that are not the sum of 2 nonzero triangular numbers.

Original entry on oeis.org

1, 3, 5, 8, 10, 14, 15, 17, 19, 23, 26, 28, 32, 33, 35, 40, 41, 44, 45, 47, 50, 52, 53, 54, 59, 62, 63, 68, 71, 74, 75, 77, 78, 80, 82, 85, 86, 89, 95, 96, 98, 103, 104, 105, 107, 109, 113, 116, 117, 118, 122, 124, 125, 128, 129, 131, 134, 138, 140, 143, 145, 147
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)

Keywords

Comments

A053603(a(n)) = 0. - Reinhard Zumkeller, Jun 28 2013

Crossrefs

Integers not in the sequence A051533. Cf. A002097, A000217, A007294, A051611, A053603.

Programs

  • Haskell
    a051611 n = a051611_list !! (n-1)
    a051611_list = filter ((== 0) . a053603) [1..]
    -- Reinhard Zumkeller, Jun 28 2013
  • Mathematica
    notSumQ[n_] := Reduce[ 0 < x <= y && n == x*(x + 1)/2 + y*(y + 1)/2, {x, y}, Integers] === False; Select[ Range[150], notSumQ] (* Jean-François Alcover, Jun 27 2012 *)
    With[{trnos=Accumulate[Range[100]]},Complement[Range[150],Total/@ Tuples[ trnos,2]]] (* Harvey P. Dale, Jun 01 2016 *)

A347730 Number of compositions (ordered partitions) of n into at most 2 triangular numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 2, 2, 0, 2, 1, 2, 1, 2, 0, 1, 4, 0, 2, 0, 1, 3, 2, 0, 2, 2, 0, 2, 1, 2, 1, 4, 0, 0, 2, 0, 3, 2, 2, 2, 0, 0, 3, 2, 0, 1, 4, 0, 2, 2, 0, 4, 0, 0, 0, 3, 3, 2, 2, 0, 2, 2, 0, 0, 2, 2, 3, 2, 0, 2, 2, 0, 3, 2, 0, 0, 4, 0, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 11 2021

Keywords

Crossrefs

Formula

a(n) = c(n) + Sum_{k=1..n-1} c(k) * c(n-k), where c = A010054. - Wesley Ivan Hurt, Jan 06 2024
Previous Showing 11-13 of 13 results.