A230042 Palindromic primes with strictly increasing product of digits.
2, 3, 5, 7, 181, 191, 353, 373, 383, 727, 757, 787, 797, 19891, 19991, 34843, 35753, 36563, 37573, 38783, 74747, 75557, 76667, 77977, 78787, 78887, 79997, 1987891, 1988891, 1998991, 3479743, 3487843, 3569653, 3586853, 3589853, 3689863, 3698963, 3799973
Offset: 1
Examples
a(6) = 191, product of digits is 9; a(7) = 353, product of digits is 45 and 45 > 9.
Links
- Shyam Sunder Gupta and Chai Wah Wu, Table of n, a(n) for n = 1..200 (terms for n = 1..128 from Shyam Sunder Gupta)
Programs
-
Mathematica
a = {}; t = 0; Do[z = n*10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]; If[PrimeQ[z], s = Apply[Times, IntegerDigits[z]]; If[s > t, t = s; AppendTo[a, z]]], {n, 10^4}]; a nxt[{p_,d_}]:=Module[{n=NextPrime[p]},While[!PalindromeQ[n]||Times@@ IntegerDigits[ n]<=d,n=NextPrime[n]];{n,Times@@IntegerDigits[n]}]; NestList[nxt,{2,2},40][[All,1]] (* Harvey P. Dale, Sep 30 2018 *)
Comments