cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A294065 Row 2 in rectangular array A292929.

Original entry on oeis.org

2, -4, 8, -14, 18, -36, 56, -74, 116, -164, 224, -324, 442, -592, 808, -1074, 1410, -1860, 2416, -3102, 4010, -5112, 6464, -8204, 10294, -12860, 16072, -19914, 24586, -30356, 37248, -45534, 55608, -67604, 81928, -99182, 119608, -143832, 172760, -206834, 247048, -294676, 350504, -416080, 493248, -583340, 688616, -811740, 954974, -1121564, 1315504, -1540210, 1800434, -2102060, 2450224, -2852040
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2017

Keywords

Examples

			G.f.: A(q) = 2 - 4*q + 8*q^2 - 14*q^3 + 18*q^4 - 36*q^5 + 56*q^6 - 74*q^7 + 116*q^8 - 164*q^9 + 224*q^10 - 324*q^11 + 442*q^12 - 592*q^13 + 808*q^14 - 1074*q^15 + 1410*q^16 - 1860*q^17 + 2416*q^18 - 3102*q^19 + 4010*q^20 +...
RELATED SERIES.
Let R1(q) denote the g.f. of row 1 (with offset 0) in array A292929, then
A(q)/R1(q) = 1 + q^2 + q^3 - 3*q^5 + q^6 + 4*q^7 + q^8 - 3*q^9 + q^10 + 3*q^11 + q^12 - 5*q^13 + q^14 + 7*q^15 - 11*q^17 + 16*q^19 + 2*q^20 - 18*q^21 + 21*q^23 + q^24 - 27*q^25 + q^26 + 38*q^27 + q^28 - 55*q^29 + 2*q^30 +...
then it appears that the even bisection of A(q)/R1(q) forms a g.f. of A053692:
(A(q)/R1(q) + A(-q)/R1(-q))/2 = Product_{n>=1} (1 - q^(16*n))^2*(1 + q^(4*n-2)).
		

Crossrefs

Programs

  • Mathematica
    nmax = 55; kmax = Ceiling[Sqrt[nmax]];
    Q[q_] := Sum[(x - q^k)^k, {k, -kmax, kmax}];
    S[q_] := Sqrt[Q[q]/Q[-q]];
    row[n_] := (1/q^n)*SeriesCoefficient[Sqrt[Q[q]/Q[-q]], {x, 0, n}] + O[q]^nmax // CoefficientList[#, q]&;
    row[2] (* Jean-François Alcover, Nov 04 2017 *)

A112301 Expansion of (eta(q) * eta(q^16))^2 / (eta(q^2) * eta(q^8)) in powers of q.

Original entry on oeis.org

1, -2, 0, 0, 2, 0, 0, 0, 1, -4, 0, 0, 2, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 3, -4, 0, 0, 2, 0, 0, 0, 0, -4, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, -6, 0, 0, 2, 0, 0, 0, 0, -4, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, -4, 0, 0, 0, 0, 0, 0, 1, -4, 0, 0, 4, 0, 0, 0, 2, -4, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 2, 0, 0, 0, 0
Offset: 1

Views

Author

Michael Somos, Sep 02 2005, Oct 02 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 2*q^2 + 2*q^5 + q^9 - 4*q^10 + 2*q^13 + 2*q^17 - 2*q^18 + 3*q^25 - ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 2, 0, q^4] / 2, {q, 0, n}]; (* Michael Somos, Oct 19 2013 *)
    QP = QPochhammer; s = (QP[q]*QP[q^16])^2/(QP[q^2]*QP[q^8]) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^16 + A))^2 / (eta(x^2 + A) * eta(x^8 + A)), n))};
    
  • PARI
    {a(n) = if( n>0 & (n+1)%4\2, (n%2*3 - 2) * sumdiv( n / gcd(n, 2), d, (-1)^(d\2)))};

Formula

Expansion of q * phi(-q) * psi(q^8) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of (phi(-q^2)^2 - phi(-q)^2) / 4 in powers of q where phi() is a Ramanujan theta function.
Euler transform of period 16 sequence [ -2, -1, -2, -1, -2, -1, -2, 0, -2, -1, -2, -1, -2, -1, -2, -2, ...].
a(n) is ultiplicative with a(2) = -2, a(2^e) = 0 if e>1, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4).
Moebius transform is period 16 sequence [ 1, -3, -1, 2, 1, 3, -1, 0, 1, -3, -1, -2, 1, 3, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 4 (t/i) f(t) where q = exp(2 Pi i t).
G.f.: x * Product_{k>0} (1 - x^k)^2 * (1 + x^(8*k))^2 * (1 + x^(2*k)) * (1 + x^(4*k)).
G.f.: Sum_{k>0} Kronecker(-4, k) * x^k * (1 - x^k)^2 / (1 - x^(4*k)).
a(4*n) = a(4*n + 3) = a(8*n + 6) = 0. a(8*n + 2) = -2 * A008441(n).
a(n) = -(-1)^n * A134013(n). a(4*n + 1) = A008441(n). a(8*n + 1) = A113407(n). a(8*n + 5) = 2 * A053692(n).

A134013 Expansion of q * phi(q) * psi(q^8) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 6, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 1, 4, 0, 0, 4, 0, 0
Offset: 1

Views

Author

Michael Somos, Oct 02 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 2*q^2 + 2*q^5 + q^9 + 4*q^10 + 2*q^13 + 2*q^17 + 2*q^18 + 3*q^25 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1/2) EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, q^4], {q, 0, n}]; (* Michael Somos, Oct 30 2015 *)
  • PARI
    {a(n) = if( n>0 && (n+1)%4\2, (n%4) * sumdiv( n/gcd(n,2), d, (-1)^(d\2)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^16 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^8 + A)), n))};

Formula

Expansion of eta(q^2)^5 * eta(q^16)^2 / ( eta(q)^2 * eta(q^4)^2 * eta(q^8) ) in powers of q.
Euler transform of period 16 sequence [ 2, -3, 2, -1, 2, -3, 2, 0, 2, -3, 2, -1, 2, -3, 2, -2, ...].
Moebius transform is period 16 sequence [ 1, 1, -1, -2, 1, -1, -1, 0, 1, 1, -1, 2, 1, -1, -1, 0, ...].
a(n) is multiplicative with a(2) = 2, a(2^e) = 0 if e>1, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A134014.
a(4*n) = a(4*n + 3) = a(8*n + 6) = 0. a(8*n + 2) = 2 * a(4*n + 1).
G.f.: Sum_{k>0} Kronecker(-4, k) * x^k * (1 + x^k)^2 / (1 - x^(4*k)).
a(n) = -(-1)^n * A112301(n). a(4*n + 1) = A008441(n). a(8*n + 1) = A113407(n). a(8*n = 5) = 2 * A053692(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/4 (A003881). - Amiram Eldar, Nov 24 2023

A132004 Expansion of (1 - phi(q^3) / phi(q) * phi(-q^2) * phi(-q^6)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 1, -1, 2, -1, 0, -1, 1, -2, 0, -1, 2, 0, 2, -1, 2, -1, 0, -2, 0, 0, 0, -1, 3, -2, 1, 0, 2, -2, 0, -1, 0, -2, 0, -1, 2, 0, 2, -2, 2, 0, 0, 0, 2, 0, 0, -1, 1, -3, 2, -2, 2, -1, 0, 0, 0, -2, 0, -2, 2, 0, 0, -1, 4, 0, 0, -2, 0, 0, 0, -1, 2, -2, 3, 0, 0, -2
Offset: 1

Views

Author

Michael Somos, Aug 06 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = x - x^2 + x^3 - x^4 + 2*x^5 - x^6 - x^8 + x^9 - 2*x^10 - x^12 + 2*x^13 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 85, Equation (32.72).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, (-1)^(n + #) KroneckerSymbol[ -36, #] &]]; (* Michael Somos, Nov 01 2015 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # < 5, -(-1)^#, Mod[#, 4] == 3, 1 - Mod[#2, 2], True, #2 + 1] & @@@ FactorInteger @ n)]; (* Michael Somos, Nov 01 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (-1)^(n+d) * kronecker( -36, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^2 * eta(x^4 + A) * eta(x^6 + A)^7 / (eta(x^2 + A)^3 * eta(x^3 + A)^2 * eta(x^12 + A)^3)) / 2, n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 1, p==2, -1, p%4==1, e+1, 1-e%2)))};

Formula

Expansion of (1 - eta(q)^2 * eta(q^4) * eta(q^6)^7 / (eta(q^2)^3 * eta(q^3)^2 * eta(q^12)^3)) / 2 in powers of q.
a(n) is multiplicative with a(2^e) = 2*0^e - 1, a(3^e) = 1, a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4).
G.f.: Sum_{k>0} x^k / (1 + x^k) * Kronecker(-36, k).
a(3*n) = a(n). -2 * a(n) = A132003(n) unless n = 0. a(2*n) = - A035154(n). a(2*n + 1) = A125079(n).
a(n) = (-1)^n * A035154(n). a(12*n + 7) = a(12*n + 11) = 0. - Michael Somos, Nov 01 2015
a(3*n + 1) = A258277(n). a(3*n + 2) = - A258278(n). a(4*n + 1) = A008441(n). a(4*n + 2) = - A125079(n). - Michael Somos, Nov 01 2015
a(6*n) = - A035154(n). a(6*n + 2) = - A122865(n). a(6*n + 4) = - A122856(n). - Michael Somos, Nov 01 2015
a(8*n + 1) = A113407(n). a(8*n + 5) = 2 * A053692(n). - Michael Somos, Nov 01 2015

A244540 Expansion of phi(q) * (phi(q) + phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 3, 2, 3, 4, 2, 0, 3, 5, 4, 2, 2, 4, 0, 0, 3, 6, 5, 2, 4, 0, 2, 0, 2, 7, 4, 4, 0, 4, 0, 0, 3, 4, 6, 0, 5, 4, 2, 0, 4, 6, 0, 2, 2, 4, 0, 0, 2, 3, 7, 4, 4, 4, 4, 0, 0, 4, 4, 2, 0, 4, 0, 0, 3, 8, 4, 2, 6, 0, 0, 0, 5, 6, 4, 2, 2, 0, 0, 0, 4, 7, 6, 2, 0, 8, 2
Offset: 0

Views

Author

Michael Somos, Jun 29 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*q + 3*q^2 + 2*q^3 + 3*q^4 + 4*q^5 + 2*q^6 + 3*q^8 + 5*q^9 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 33); A[1] + 3*A[2] + 3*A[3];
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], Sum[ {3, 0, -1, 0, 1, 0, -3, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] (EllipticTheta[ 3, 0, q] + EllipticTheta[ 3, 0, q^2]) / 2, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, [0, 3, 0, -1, 0, 1, 0, -3][d%8 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( A * (A + subst(A, x, x^2)) / 2, n))};
    
  • Sage
    A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[0] + 3*A[1] + 3*A[2];
    

Formula

Expansion of f(-q^3, -q^5)^2 * phi(q) / psi(-q) = f(-q^3, -q^5)^2 * chi(q)^3 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [3, -3, 1, 0, 1, -3, 3, -2, ...].
Moebius transform is period 8 sequence [3, 0, -1, 0, 1, 0, -3, 0, ...].
Convolution product of A244526 and A107635. Convolution product of A000122 and A093709.
a(n) = (A004018(n) + A033715(n)) / 2 = A244543(2*n).
a(2*n) = a(n). a(8*n + 3) = 2*A033761(n). a(8*n + 5) = 4*A053692(n). a(8*n + 7) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = Pi*(1 + 1/sqrt(2))/2 = 2.681517... . - Amiram Eldar, Jun 08 2025

A226194 Expansion of f(-x^1, -x^7) * f(-x^3, -x^5) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 1, -1, 0, 0, 2, 0, 1, -1, 1, -2, 0, 0, 1, -1, 0, -1, 1, 0, 1, -2, 0, -2, 1, 0, 1, 0, 1, -1, 1, 0, 1, 0, 0, -1, 3, -1, 0, -1, 0, -2, 1, 0, 1, -1, 1, 0, 1, 0, 0, -2, 0, -1, 0, -1, 2, -2, 0, -1, 0, 0, 2, -1, 1, -1, 2, 0, 0, 0, 0, -1, 1, 0, 2
Offset: 0

Views

Author

Michael Somos, May 30 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x - x^3 + x^4 - x^5 + x^6 - x^7 + 2*x^10 + x^12 - x^13 + x^14 - 2*x^15 + ...
G.f. = q^5 - q^13 - q^29 + q^37 - q^45 + q^53 - q^61 + 2*q^85 + q^101 - q^109 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^8]^2 / QPochhammer[ -q, q], {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^8 + A)^2 / eta(x^2 + A), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 8*n + 5; A = factor(n); simplify( -I/2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p%4 == 3, if( e%2, 0, (-1)^(e * (p+1) / 8)), (e+1) * I^(e * (p-1) / 4)))))};

Formula

Expansion of q^(-5/8) * eta(q) * eta(q^8)^2 / eta(q^2) in powers of q.
Euler transform of period 8 sequence [-1, 0, -1, 0, -1, 0, -1, -2, ...].
a(n) = -I/2 * b(8*n + 5) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (-1)^(e * (p+1)/8) * (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = (e+1) * I^(e * (p-1)/4) if p == 1 (mod 4).
G.f.: Product_{k>0} (1 - x^(8*k))^2 / (1 + x^k).
a(9*n + 2) = a(9*n + 8) = 0. a(9*n + 5) = -a(n).
a(n) = (-1)^n * A053692(n).

A244554 Expansion of phi(q) * (phi(q) - phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, -2, 1, 4, -2, 0, 1, -1, 4, -2, -2, 4, 0, 0, 1, 2, -1, -2, 4, 0, -2, 0, -2, 5, 4, -4, 0, 4, 0, 0, 1, -4, 2, 0, -1, 4, -2, 0, 4, 2, 0, -2, -2, 4, 0, 0, -2, 1, 5, -4, 4, 4, -4, 0, 0, -4, 4, -2, 0, 4, 0, 0, 1, 8, -4, -2, 2, 0, 0, 0, -1, 2, 4, -2, -2, 0, 0
Offset: 1

Views

Author

Michael Somos, Jun 30 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^2 - 2*q^3 + q^4 + 4*q^5 - 2*q^6 + q^8 - q^9 + 4*q^10 - 2*q^11 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 33); A[2] + A[3];
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ {1, 0, -3, 0, 3, 0, -1, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] (EllipticTheta[ 3, 0, q] - EllipticTheta[ 3, 0, q^2]) / 2, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, 0, -3, 0, 3, 0, -1][d%8 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( A * (A - subst(A, x, x^2)) / 2, n))};
    
  • Sage
    A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[1] + A[2];
    

Formula

Expansion of q * f(-q, -q^7)^2 * phi(q) / psi(-q) = q * f(-q, -q^7)^2 * chi(q)^3 in powers of q where phi(), psi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [1, -3, 3, 0, 3, -3, 1, -2, ...].
Moebius transform is period 8 sequence [1, 0, -3, 0, 3, 0, -1, 0, ...].
Convolution product of A244560 and A107635. Convolution product of A000122 and A143259.
a(n) = (A004018(n) - A033715(n)) / 2 = A243747(2*n).
a(2*n) = a(n). a(8*n + 3) = -2 * A033761(n). a(8*n + 5) = 4 * A053692(n). a(8*n + 7) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = Pi*(1 - 1/sqrt(2))/2 = 0.460075... . - Amiram Eldar, Jun 08 2025

A053693 Number of self-conjugate 8-core partitions of n.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 1, 1, 5, 2, 3, 4, 4, 5, 3, 4, 4, 6, 4, 5, 6, 4, 5, 7, 6, 7, 7, 5, 7, 7, 6, 5, 8, 5, 5, 6, 6, 6, 13, 11, 4, 11, 7, 9, 9, 6, 11, 12, 10, 8, 13, 9, 8, 15, 9, 7, 12, 8, 10, 14, 9, 10, 13, 13, 8, 16, 12, 12, 15, 8, 9, 14, 12, 11, 19, 11, 12, 18, 14, 11, 17
Offset: 0

Views

Author

James Sellers, Feb 14 2000

Keywords

Examples

			G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2^x*10 + 2*x^11 + ...
G.f. = q^21 + q^29 + q^45 + q^53 + q^61 + q^69 + q^77 + 2*q^85 + 2*q^93 + 2*q^101 + ...
		

Crossrefs

Cf. A053692.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^2 QPochhammer[ x^16]^4 / (QPochhammer[ x] QPochhammer[ x^4]), {x, 0, n}]; (* Michael Somos, Feb 22 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^16 + A)^4 / (eta(x + A) * eta(x^4 + A)), n))}; /* Michael Somos, Apr 28 2003 */

Formula

Euler transform of period 16 sequence [ 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, -4, ...]. - Michael Somos, Apr 28 2003
Expansion of q^(-21/8) * eta(q^2)^2 * eta(q^16)^4 / (eta(q) * eta(q^4)) in powers of q. - Michael Somos, Apr 28 2003
G.f.: product((1-q^(16*i))^4*(1-q^(4*i-2))/(1-q^(2*i-1)), i=1..infinity)

A244544 Expansion of (phi(q) + phi(q^2))^2 / 4 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 2, 0, 3, 4, 4, 2, 2, 2, 0, 0, 3, 4, 5, 2, 4, 0, 2, 0, 2, 4, 4, 4, 0, 2, 0, 0, 3, 4, 6, 0, 5, 2, 2, 0, 4, 4, 0, 2, 2, 2, 0, 0, 2, 2, 7, 4, 4, 2, 4, 0, 0, 4, 4, 2, 0, 2, 0, 0, 3, 4, 4, 2, 6, 0, 0, 0, 5, 4, 4, 2, 2, 0, 0, 0, 4, 6, 6, 2, 0, 4, 2
Offset: 0

Views

Author

Michael Somos, Jun 29 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 3*q^2 + 2*q^3 + 3*q^4 + 2*q^5 + 2*q^6 + 3*q^8 + 4*q^9 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 33); A[1] + 2*A[2] + 3*A[3];
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], Sum[ {2, 1, 0, 0, 0, -1, -2, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] + EllipticTheta[ 3, 0, q^2])^2 / 4, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, [0, 2, 1, 0, 0, 0, -1, -2][d%8 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( (A + subst(A, x, x^2))^2 / 4, n))};
    
  • Sage
    A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[0] + 2*A[1] + 3*A[2];
    

Formula

Expansion of f(-q^3, -q^5)^4 / psi(-q)^2 in powers of q where phi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [ 2, 0, -2, 2, -2, 0, 2, -2, ...].
Moebius transform is period 8 sequence [ 2, 1, 0, 0, 0, -1, -2, 0, ...].
Convolution square of A093709.
a(2*n) = A244540(n). a(8*n + 3) = 2*A033761(n). a(8*n + 5) = 2*A053692(n). a(8*n + 7) = 0.

A286813 Number of positive odd solutions to equation x^2 + 8*y^2 = 8*n + 9.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 2, 0
Offset: 0

Views

Author

Seiichi Manyama, May 28 2017

Keywords

Crossrefs

Related to the number of positive odd solutions to equation x^2 + k*y^2 = 8*n + k + 1: A008441 (k=1), A033761 (k=2), A033762 (k=3), A053692 (k=4), A033764 (k=5), A259896 (k=6), A035162 (k=7), this sequence (k=8).

Formula

Expansion of q^(-9/8) * (eta(q^2) * eta(q^16))^2 / (eta(q) * eta(q^8)) in powers of q.
Euler Transform of -(-2*x^8-x^7-1)/(x^9+x^8+x+1) (o.g.f.). - Simon Plouffe, Jun 23 2018
Previous Showing 11-20 of 20 results.