cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A225676 Numbers n such that A054404(n) does not equal round(n/e).

Original entry on oeis.org

7, 10, 15, 18, 26, 29, 34, 37, 45, 48, 56, 64, 67, 75, 83, 86, 94, 97, 102, 105, 113, 116, 121, 124, 132, 135, 140, 143, 151, 154, 162, 170, 173, 181, 189, 192, 200, 203, 208, 211, 219, 222, 227, 230, 238, 241, 249
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    PR[n_, r_] := (r/n)*Sum[1/k, {k, r, n - 1}]; maxi[li_] := {Do[If[li[[n + 1]] < li[[n]], aux = n; Break[]], {n, 1, Length[li] - 1}], aux}[[2]]; SEQ[1] = 0; SEQ[2] = 1; SEQ[n_] := maxi[Table[PR[n, i], {i, 1, n - 1}]]; Select[Range@400, ! SEQ[#] == Round[#/E] &]

A306480 Numbers k such that A054404(k) is not floor(k/e - 1/(2*e) + 1/2).

Original entry on oeis.org

97, 24586, 14122865, 14437880866, 23075113325617, 53123288947296842, 166496860519928411041, 681661051602157413173890, 3532450008306093939076231361, 22600996284275635202947629995722, 174979114331029936735527491233938577, 1612273088535187752419835130130200398626
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that the optimal threshold in the secretary problem with k candidates is not floor(k/e - 1/(2*e) + 1/2).

Examples

			A054404(97)=35 but floor(97/e - 1/(2e) + 1/2) = 36.
		

Crossrefs

Programs

  • Mathematica
    P[r_, n_] := If[r == 0, 1/n, r/n (PolyGamma[0, n] - PolyGamma[0, r])]
    in[n_] := (n - 1/2)/E + 1/2 - (3E - 1)/2/(2 n + 3E - 1) - 1
    su[n_] := n/E - 1/2/E + 1/2
    A054404[n_] := If[P[Floor[su[n]], n] >= P[Ceiling[in[n]], n], Floor[su[n]], Ceiling[in[n]]]
    lista = Select[Range[25000], ! Floor[su[#]] == Ceiling[in[#]] &];
    IS[n_] := If[Floor[su[n]] == Ceiling[in[n]], False, ! (A054404[n] == Floor[su[n]])]
    Select[lista, IS]

Formula

Empirical observation: a(n) = (2*d(6k+3)+1)/2, where d(m) is the denominator of the truncated continued fraction [a_0;a_1,a_2,...,a_m] of 1/e. - Giovanni Corbelli, Jul 23 2021

Extensions

a(4)-a(12) from Jon E. Schoenfield, Feb 28 2019

A242672 Decimal expansion of an optimal stopping constant related to the Secretary problem.

Original entry on oeis.org

3, 8, 6, 9, 5, 1, 9, 2, 4, 1, 3, 9, 7, 9, 9, 9, 4, 9, 5, 6, 9, 4, 1, 6, 7, 2, 7, 8, 7, 7, 9, 0, 8, 3, 4, 3, 2, 1, 9, 4, 6, 0, 6, 4, 3, 2, 5, 1, 9, 6, 9, 3, 3, 4, 4, 0, 4, 3, 9, 6, 0, 8, 9, 1, 1, 7, 0, 5, 9, 6, 2, 9, 9, 7, 8, 9, 8, 0, 3, 1, 5, 6, 0, 7, 0, 3, 6, 0, 6, 6, 7, 6, 1, 8, 4, 9, 3, 0, 8, 7, 1, 9, 7, 5, 7, 5
Offset: 1

Views

Author

Jean-François Alcover, May 20 2014

Keywords

Examples

			3.869519241397999495694167278779...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15, p. 362.

Crossrefs

Programs

  • Mathematica
    NProduct[(1+2/k)^(1/(k+1)), {k, 1, Infinity}, NProductFactors -> 1000, WorkingPrecision -> 48] // RealDigits[#, 10, 40]& // First

Formula

product_(k>0) (1+2/k)^(1/(k+1)).
Also equals exp(2*Sum_{k>=3} (log(k)/(k^2-1)) - log(2)/3).

Extensions

More terms from Alois P. Heinz, Jun 06 2014

A242674 Decimal expansion of the asymptotic probability of success in one of the Secretary problems.

Original entry on oeis.org

5, 8, 0, 1, 6, 4, 2, 2, 3, 9, 2, 0, 8, 5, 5, 3, 4, 6, 4, 2, 6, 0, 0, 8, 3, 2, 3, 5, 7, 2, 9, 9, 7, 2, 7, 6, 6, 3, 3, 0, 8, 8, 6, 3, 8, 1, 1, 1, 1, 0, 1, 4, 0, 4, 3, 1, 6, 8, 7, 4, 1, 1, 7, 9, 2, 1, 6, 6, 1, 3, 8, 7, 7, 9, 6, 9, 2, 9, 2, 4, 9, 1, 8, 4, 5, 9, 3, 1, 5, 2, 6, 8, 4, 4, 7, 0, 3, 4, 7, 4
Offset: 0

Views

Author

Jean-François Alcover, May 20 2014

Keywords

Comments

This is the asymptotic probability of success for the full-information problem with uniform distribution: we can not only determine which of any two applicants is better than the other, but also determine his/her absolute value, and that value is known to be uniformly distributed on a known interval (say, [0, 1]), independently for each applicant; so we have more information than in the basic version of the problem (for which the chance of success is given by A068985), so the chance of success is greater. Here the number of applicants is known in advance (although we consider the limiting case when it is sent to infinity); for the variant where it is itself a random variable, see A325905. - Andrey Zabolotskiy, Sep 14 2019

Examples

			0.580164223920855346426008323572997276633...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15, p. 362.

Crossrefs

Programs

  • Mathematica
    a = x /. FindRoot[ExpIntegralEi[x] - EulerGamma - Log[x] == 1, {x, 1}, WorkingPrecision -> 105]; Exp[-a] - (Exp[a]-a-1)*ExpIntegralEi[-a] // RealDigits[#, 10, 100]& // First

Formula

exp(-a) - (exp(a)-a-1)*Ei(-a), where a is the unique real solution of the equation Ei(a)-gamma-log(a) = 1, Ei being the exponential integral function, and gamma the Euler-Mascheroni constant (0.5772156649...).

A226242 Numerators of the probability of success in sultan's dowry problem with n daughters.

Original entry on oeis.org

1, 1, 1, 11, 13, 77, 29, 459, 341, 3349, 251, 32891, 28271, 395243, 420983, 74587, 158183, 2833255, 853661, 3407275, 77976391, 27223837, 28399557, 1814074083, 5665315119, 29397421371, 27452509171, 85332099113, 88200436013
Offset: 1

Views

Author

Keywords

Examples

			1, 1/2, 1/2, 11/24, 13/30, 77/180, 29/70, 459/1120, ...
		

Crossrefs

Cf. A226243 (denominators), A054404.

Programs

  • Mathematica
    G[k_, n_] := G[k, n] = 1/( k + 1) Max[(k + 1)/n, G[k + 1, n]] + k/(k + 1)G[k + 1, n]; G[n_, n_] = 0; Numerator@Table[G[0, n], {n, 1, 20}]
  • PARI
    a(n)={my(g=0); forstep(k=n-1, 0, -1, g = max(1/n, g/(k+1)) + k*g/(k+1)); numerator(g)} \\ Andrew Howroyd, Nov 12 2018

A226243 Denominators of the probability of success in sultan's dowry problem with n daughters.

Original entry on oeis.org

1, 2, 2, 24, 30, 180, 70, 1120, 840, 8400, 630, 83160, 72072, 1009008, 1081080, 192192, 408408, 7351344, 2217072, 8868288, 203693490, 71131060, 74364290, 4759314560, 14872858000, 77338861600, 72282089880
Offset: 1

Views

Author

Keywords

Examples

			1, 1/2, 1/2, 11/24, 13/30, 77/180, 29/70, 459/1120, ...
		

Crossrefs

Cf. A226242(numerators), A054404.

Programs

  • Mathematica
    G[k_, n_] := G[k, n] = 1/( k + 1) Max[(k + 1)/n, G[k + 1, n]] + k/(k + 1)G[k + 1, n]; G[n_, n_] = 0; Denominator@Table[G[0, n], {n, 1, 20}]
  • PARI
    a(n)={my(g=0); forstep(k=n-1, 0, -1, g = max(1/n, g/(k+1)) + k*g/(k+1)); denominator(g)} \\ Andrew Howroyd, Nov 12 2018

A242673 Decimal expansion of the unique real solution of the equation Ei(x)-gamma-log(x) = 1, where Ei is the exponential integral function and gamma the Euler-Mascheroni constant.

Original entry on oeis.org

8, 0, 4, 3, 5, 2, 2, 6, 2, 8, 4, 5, 6, 3, 7, 5, 8, 4, 6, 5, 4, 6, 3, 8, 5, 8, 7, 7, 8, 4, 0, 7, 0, 5, 5, 1, 0, 4, 2, 7, 1, 6, 9, 8, 5, 7, 8, 6, 6, 4, 2, 1, 5, 8, 6, 5, 6, 5, 4, 4, 7, 8, 2, 7, 2, 0, 9, 1, 3, 6, 5, 8, 9, 2, 1, 0, 1, 3, 1, 9, 3, 6, 3, 1, 4, 4, 6, 7, 4, 3, 4, 6, 3, 8, 1, 5, 2, 9, 9, 4
Offset: 0

Views

Author

Jean-François Alcover, May 20 2014

Keywords

Comments

This constant is an auxiliary constant used in computing the asymptotic probability of success in one of the Secretary problems.

Examples

			0.804352262845637584654638587784070551...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15, p. 362.

Crossrefs

Programs

  • Mathematica
    a = x /. FindRoot[ExpIntegralEi[x] - EulerGamma - Log[x] == 1, {x, 1}, WorkingPrecision -> 105]; RealDigits[a, 10, 100] // First

A226033 Round(n * exp(-1 - 1/(2n))), an approximation to the number of daughters to wait before picking in the sultan's dowry problem (Better that A225593).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 26, 26, 26
Offset: 1

Views

Author

Keywords

Comments

It is very similar to the sequence A054404, but differs for example at n=97 (see A226082).

Crossrefs

Programs

  • Maple
    A226033 := proc(n)
        round(n/exp(1+1/2/n)) ;
    end proc: # R. J. Mathar, Jun 09 2013
  • Mathematica
    Table[Round[n*E^(-1-1/(2*n))], {n,100}]

A226082 Number of daughters to wait before picking in the sultan's dowry problem that is not equal to round(n*e^(-1 - 1/(2*n))).

Original entry on oeis.org

97, 1361, 24586, 73757
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that A054404(n) is not equal to A226033(n).

Crossrefs

Programs

  • Mathematica
    li[n_] := -1/2* 1/ProductLog[-Exp[1 - 1/((2  n - 2))]/(2n-2)]; Table[If[! Round[n*E^(-1 - 1/(2*n))] == Ceiling[li[n]], Print[n]; n], {n, 4, 1000000}]

A243533 Decimal expansion of 'c', an asymptotic constant related to a variation of the "Secretary problem" with a uniform distribution.

Original entry on oeis.org

1, 3, 5, 3, 1, 3, 0, 2, 7, 2, 2, 9, 5, 9, 3, 3, 2, 8, 1, 6, 5, 2, 9, 4, 4, 0, 3, 2, 4, 9, 2, 2, 5, 9, 6, 2, 6, 9, 0, 8, 7, 9, 0, 4, 2, 4, 3, 7, 1, 9, 1, 1, 2, 6, 4, 6, 1, 2, 0, 1, 7, 2, 2, 6, 3, 3, 0, 9, 3, 7, 0, 1, 6, 4, 8, 7, 3, 5, 1, 8, 4, 2, 2, 3, 9, 6, 4, 3, 0, 6, 7, 4, 8, 6, 0, 1, 5, 4, 8, 7, 4, 6, 0, 1, 4
Offset: 1

Views

Author

Jean-François Alcover, Jun 06 2014

Keywords

Examples

			1.3531302722959332816529440324922596269...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal stopping constants, p. 362.

Crossrefs

Programs

  • Mathematica
    digits = 65; c = 2*NSum[Log[k]/(k^2 - 1), {k, 3, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 10^4, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 10, Method -> "DoubleExponential"}}] - (Log[2]/3); RealDigits[c, 10, digits] // First

Formula

log(A242672).
2*Sum_{k >= 3}(log(k)/(k^2-1)) - log(2)/3.
Showing 1-10 of 14 results. Next