A366561
Triangle read by rows: T(n,k) = Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y), n) = k], where f(x,y) = x^2 - y^2.
Original entry on oeis.org
1, 2, 2, 4, 0, 5, 8, 0, 0, 8, 16, 0, 0, 0, 9, 8, 8, 10, 0, 0, 10, 36, 0, 0, 0, 0, 0, 13, 32, 0, 0, 8, 0, 0, 0, 24, 36, 0, 24, 0, 0, 0, 0, 0, 21, 32, 32, 0, 0, 18, 0, 0, 0, 0, 18, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 32, 0, 40, 32, 0, 0, 0, 0, 0, 0, 0, 40
Offset: 1
{
{1}, = 1^2
{2, 2}, = 2^2
{4, 0, 5}, = 3^2
{8, 0, 0, 8}, = 4^2
{16, 0, 0, 0, 9}, = 5^2
{8, 8, 10, 0, 0, 10}, = 6^2
{36, 0, 0, 0, 0, 0, 13}, = 7^2
{32, 0, 0, 8, 0, 0, 0, 24}, = 8^2
{36, 0, 24, 0, 0, 0, 0, 0, 21}, = 9^2
{32, 32, 0, 0, 18, 0, 0, 0, 0, 18}, = 10^2
{100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21}, = 11^2
{32, 0, 40, 32, 0, 0, 0, 0, 0, 0, 0, 40} = 12^2
}
-
nn = 12; f = x^2 - y^2; g[n_] := DivisorSum[n, MoebiusMu[#] # &]; Flatten[Table[Table[Sum[Sum[If[GCD[f, n] == k, 1, 0], {x, 1, n}], {y, 1, n}], {k, 1, n}], {n, 1, nn}]]
-
T(n,k) = sum(x=1, n, sum(y=1, n, gcd(x^2 - y^2, n) == k)); \\ Michel Marcus, Oct 14 2023
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 3, 0, 1, 0, 6, 2, 1, 1, 0, 5, 0, 0, 0, 1, 0, 12, 4, 2, 1, 1, 1, 0, 13, 0, 1, 0, 1, 0, 1, 0, 18, 4, 0, 2, 1, 0, 1, 1, 0, 15, 0, 3, 0, 0, 0, 1, 0, 1, 0
Offset: 1
First few rows of the triangle:
1;
1, 0;
2, 1, 0;
3, 0, 1, 0;
6, 2, 1, 1, 0;
5, 0, 0, 0, 1, 0
12, 4, 2, 1, 1, 1, 0;
...
A127465
Triangle read by rows: T(n,k) = k*phi(n/k) if k|n, T(n,k)=0 otherwise.
Original entry on oeis.org
1, 1, 2, 2, 0, 3, 2, 2, 0, 4, 4, 0, 0, 0, 5, 2, 4, 3, 0, 0, 6, 6, 0, 0, 0, 0, 0, 7, 4, 4, 0, 4, 0, 0, 0, 8, 6, 0, 6, 0, 0, 0, 0, 0, 9, 4, 8, 0, 0, 5, 0, 0, 0, 0, 10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 4, 4, 6, 8, 0, 6, 0, 0, 0, 0, 0, 12
Offset: 1
First few rows of the triangle are:
1;
1, 2;
2, 0, 3;
2, 2, 0, 4;
4, 0, 0, 0, 5;
2, 4, 3, 0, 0, 6;
6, 0, 0, 0, 0, 0, 7;
4, 4, 0, 4, 0, 0, 0, 8;
...
-
A127465 := proc(n,k)
if n mod k = 0 then
k*numtheory[phi](n/k) ;
else
0;
end if;
end proc:
seq(seq(A127465(n,m),m=1..n),n=1..12) ; # R. J. Mathar, Nov 08 2011
A130030
a(n) = Sum_{d|n} (-1)^omega(n/d) * phi(rad(n/d)) * prime(d).
Original entry on oeis.org
2, 1, 1, 2, 3, 6, 5, 7, 9, 14, 11, 15, 17, 20, 21, 22, 27, 20, 31, 23, 33, 38, 39, 20, 45, 48, 43, 35, 53, 6, 67, 47, 65, 64, 63, 25, 85, 78, 73, 34, 99, 20, 107, 63, 45, 94, 119, 35, 113, 56, 99, 73, 137, 54, 103, 54, 117, 134, 161, -1, 163, 136, 73, 96, 113, 24, 199, 107, 159, 12, 213
Offset: 1
a(4) = 2 = dot product of row 4 of A129691: (-1, -1, 0, 1) and the first four primes: (2, 3, 5, 7) = (-2, -3, 0, 7) = 2.
Cf.
A000010,
A000040,
A001221,
A007444,
A007947,
A023900,
A054523,
A076479,
A129691,
A130029,
A333177.
A228094
Triangle starting at row 3 read by rows of the number of permutations in the n-th Dihedral group which are the product of k disjoint cycles, d(n,k), n >= 3, 1 <= k <= n.
Original entry on oeis.org
2, 3, 1, 2, 3, 2, 1, 4, 0, 5, 0, 1, 2, 2, 4, 3, 0, 1, 6, 0, 0, 7, 0, 0, 1, 4, 2, 0, 5, 4, 0, 0, 1, 6, 0, 2, 0, 9, 0, 0, 0, 1, 4, 4, 0, 0, 6, 5, 0, 0, 0, 1, 10, 0, 0, 0, 0, 11, 0, 0, 0, 0, 1, 4, 2, 2, 2, 0, 7, 6, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 1
Offset: 3
Triangle begins
2, 3, 1;
2, 3, 2, 1;
4, 0, 5, 0, 1;
2, 2, 4, 3, 0, 1;
6, 0, 0, 7, 0, 0, 1;
4, 2, 0, 5, 4, 0, 0, 1;
6, 0, 2, 0, 9, 0, 0, 0, 1;
4, 4, 0, 0, 6, 5, 0, 0, 0, 1;
10, 0, 0, 0, 0, 11, 0, 0, 0, 0, 1;
4, 2, 2, 2, 0, 7, 6, 0, 0, 0, 0, 1;
...
- Robert A. Beeler, How to Count: An Introduction to Combinatorics and Its Applications, Springer International Publishing, 2015. See Theorem 8.4.12 at pp. 246-247.
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, Academic Press, 1973, p. 37.
-
d[n_,k_]:=If[Divisible[n,k],EulerPhi[n/k],0]+If[OddQ[n]&&k==(n+1)/2,n,If[EvenQ[n]&&(k==n/2||k==(n+2)/2),n/2,0]]; Table[d[n,k],{n,3,12},{k,n}]//Flatten (* Stefano Spezia, Jun 26 2023 *)
A366444
Triangle read by rows: T(n,k) = phi(n/k)*A023900(k) if k divides n, T(n,k) = 0 otherwise (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, 1, -1, 2, 0, -2, 2, -1, 0, -1, 4, 0, 0, 0, -4, 2, -2, -2, 0, 0, 2, 6, 0, 0, 0, 0, 0, -6, 4, -2, 0, -1, 0, 0, 0, -1, 6, 0, -4, 0, 0, 0, 0, 0, -2, 4, -4, 0, 0, -4, 0, 0, 0, 0, 4, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, 4, -2, -4, -2, 0, 2, 0, 0, 0, 0, 0, 2
Offset: 1
{
{1}, = 1
{1, -1}, = 0
{2, 0, -2}, = 0
{2, -1, 0, -1}, = 0
{4, 0, 0, 0, -4}, = 0
{2, -2, -2, 0, 0, 2}, = 0
{6, 0, 0, 0, 0, 0, -6}, = 0
{4, -2, 0, -1, 0, 0, 0, -1}, = 0
{6, 0, -4, 0, 0, 0, 0, 0, -2}, = 0
{4, -4, 0, 0, -4, 0, 0, 0, 0, 4}, = 0
{10, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10}, = 0
{4, -2, -4, -2, 0, 2, 0, 0, 0, 0, 0, 2} = 0
}
-
nn = 12; g[n_] := DivisorSum[n, MoebiusMu[#] # &]; Flatten[Table[Table[If[Mod[n, k] == 0, EulerPhi[n/k]*g[k], 0], {k, 1, n}], {n, 1, nn}]]
A366445
Triangle read by rows: T(n,k) = A023900(n/k)*phi(k) if k divides n, T(n,k) = 0 otherwise (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, -1, 1, -2, 0, 2, -1, -1, 0, 2, -4, 0, 0, 0, 4, 2, -2, -2, 0, 0, 2, -6, 0, 0, 0, 0, 0, 6, -1, -1, 0, -2, 0, 0, 0, 4, -2, 0, -4, 0, 0, 0, 0, 0, 6, 4, -4, 0, 0, -4, 0, 0, 0, 0, 4, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 2, 2, -2, -4, 0, -2, 0, 0, 0, 0, 0, 4
Offset: 1
{
{1}, = 1
{-1, 1}, = 0
{-2, 0, 2}, = 0
{-1, -1, 0, 2}, = 0
{-4, 0, 0, 0, 4}, = 0
{2, -2, -2, 0, 0, 2}, = 0
{-6, 0, 0, 0, 0, 0, 6}, = 0
{-1, -1, 0, -2, 0, 0, 0, 4}, = 0
{-2, 0, -4, 0, 0, 0, 0, 0, 6}, = 0
{4, -4, 0, 0, -4, 0, 0, 0, 0, 4}, = 0
{-10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10}, = 0
{2, 2, -2, -4, 0, -2, 0, 0, 0, 0, 0, 4} = 0
}
-
nn = 12; g[n_] := DivisorSum[n, MoebiusMu[#] # &]; Flatten[Table[Table[If[Mod[n, k] == 0, g[n/k]*EulerPhi[k], 0], {k, 1, n}], {n, 1, nn}]]
Original entry on oeis.org
1, 2, 0, 3, 1, 0, 4, 0, 1, 0, 5, 1, 1, 1, 0, 6, 1, 0, 0, 1, 0, 7, 1, 1, 1, 1, 1, 0, 8, 0, 2, 0, 1, 0, 1, 0, 9, 3, 0, 1, 1, 0, 1, 1, 0, 10, 1, 2, 1, 0, 0, 1, 0, 1, 0
Offset: 1
First few rows of the triangle:
1;
2, 0;
3, 1, 0;
4, 0, 1, 0;
5, 1, 1, 1, 0;
6, 1, 0, 0, 1, 0;
7, 1, 1, 1, 1, 1, 0;
8, 0, 2, 0, 1, 0, 1, 0;
...
A127571
Triangle T(n,k) = phi(n/k)*sigma(k) if k divides n, else 0.
Original entry on oeis.org
1, 1, 3, 2, 0, 4, 2, 3, 0, 7, 4, 0, 0, 0, 6, 2, 6, 4, 0, 0, 12, 6, 0, 0, 0, 0, 0, 8, 4, 6, 0, 7, 0, 0, 0, 15, 6, 0, 8, 0, 0, 0, 0, 0, 13, 4, 12, 0, 0, 6, 0, 0, 0, 0, 18
Offset: 1
First few rows of the triangle are:
1;
1, 3;
2, 0, 4;
2, 3, 0, 7;
4, 0, 0, 0, 6;
2, 6, 4, 0, 0, 12;
...
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 5, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
First few rows of the triangle:
1;
0, 1;
1, 0, 1;
0, 0, 0, 1;
3, 0, 0, 0, 1;
0, 1, 0, 0, 0, 1;
5, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 1;
0, 0, 1, 0, 0, 0, 0, 0, 1;
...
Comments