cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A366561 Triangle read by rows: T(n,k) = Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y), n) = k], where f(x,y) = x^2 - y^2.

Original entry on oeis.org

1, 2, 2, 4, 0, 5, 8, 0, 0, 8, 16, 0, 0, 0, 9, 8, 8, 10, 0, 0, 10, 36, 0, 0, 0, 0, 0, 13, 32, 0, 0, 8, 0, 0, 0, 24, 36, 0, 24, 0, 0, 0, 0, 0, 21, 32, 32, 0, 0, 18, 0, 0, 0, 0, 18, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 32, 0, 40, 32, 0, 0, 0, 0, 0, 0, 0, 40
Offset: 1

Views

Author

Mats Granvik, Oct 13 2023

Keywords

Comments

Row n appears to have sum n^2. The number of nonzero terms in row n is A366563(n). Sum_{k=1..n} T(n,k)*A023900(k)/n = A366562(n).

Examples

			{
{1}, = 1^2
{2, 2}, = 2^2
{4, 0, 5}, = 3^2
{8, 0, 0, 8}, = 4^2
{16, 0, 0, 0, 9}, = 5^2
{8, 8, 10, 0, 0, 10}, = 6^2
{36, 0, 0, 0, 0, 0, 13}, = 7^2
{32, 0, 0, 8, 0, 0, 0, 24}, = 8^2
{36, 0, 24, 0, 0, 0, 0, 0, 21}, = 9^2
{32, 32, 0, 0, 18, 0, 0, 0, 0, 18}, = 10^2
{100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21}, = 11^2
{32, 0, 40, 32, 0, 0, 0, 0, 0, 0, 0, 40} = 12^2
}
		

Crossrefs

Programs

  • Mathematica
    nn = 12; f = x^2 - y^2; g[n_] := DivisorSum[n, MoebiusMu[#] # &]; Flatten[Table[Table[Sum[Sum[If[GCD[f, n] == k, 1, 0], {x, 1, n}], {y, 1, n}], {k, 1, n}], {n, 1, nn}]]
  • PARI
    T(n,k) = sum(x=1, n, sum(y=1, n, gcd(x^2 - y^2, n) == k)); \\ Michel Marcus, Oct 14 2023

Formula

T(n,k) = Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y), n) = k], where f(x,y) = x^2 - y^2.
Conjecture 1: T(n,n) = A062803(n).
Conjecture 2: T(n,1) = A082953(n).
Conjectures from Ridouane Oudra, Jun 17 2025: (Start)
T(n,k) = 0 iff k not divide n.
T(n,k) = phi(n/k)*Sum_{d|k} (k/d)*phi(d*n/k), for n odd and k|n.
T(n,k) = 2*(-1)^k*phi(n/k)*Sum_{d|k} (-1)^(k/d)*(k/d)*phi(d*n/k), for n even and k|n.
T(n,k) = gcd(n,2)*(-1)^k*phi(n/k)*Sum_{d|k} (-1)^(k/d)*(k/d)*phi(d*n/k), for all integers n and k|n.
More generally, for all integers n, k: T(n,k) = gcd(n,2)*(-1)^k*A054523(n,k)*Sum_{d|k} (-1)^(k/d)*(k/d)*A054523(d*n,k). (End)

A127373 Triangle, row sums = A023896, left column = A053570.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 3, 0, 1, 0, 6, 2, 1, 1, 0, 5, 0, 0, 0, 1, 0, 12, 4, 2, 1, 1, 1, 0, 13, 0, 1, 0, 1, 0, 1, 0, 18, 4, 0, 2, 1, 0, 1, 1, 0, 15, 0, 3, 0, 0, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 12 2007

Keywords

Comments

Row sums = A023896: (1, 1, 3, 4, 10, 6, ...); left column = A053570: (1, 2, 3, 6, 5, 12, ...).

Examples

			First few rows of the triangle:
   1;
   1, 0;
   2, 1, 0;
   3, 0, 1, 0;
   6, 2, 1, 1, 0;
   5, 0, 0, 0, 1, 0
  12, 4, 2, 1, 1, 1, 0;
  ...
		

Crossrefs

Formula

A054521 * A054523 as infinite lower triangular matrices.

A127465 Triangle read by rows: T(n,k) = k*phi(n/k) if k|n, T(n,k)=0 otherwise.

Original entry on oeis.org

1, 1, 2, 2, 0, 3, 2, 2, 0, 4, 4, 0, 0, 0, 5, 2, 4, 3, 0, 0, 6, 6, 0, 0, 0, 0, 0, 7, 4, 4, 0, 4, 0, 0, 0, 8, 6, 0, 6, 0, 0, 0, 0, 0, 9, 4, 8, 0, 0, 5, 0, 0, 0, 0, 10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 4, 4, 6, 8, 0, 6, 0, 0, 0, 0, 0, 12
Offset: 1

Views

Author

Gary W. Adamson, Jan 15 2007

Keywords

Examples

			First few rows of the triangle are:
1;
1, 2;
2, 0, 3;
2, 2, 0, 4;
4, 0, 0, 0, 5;
2, 4, 3, 0, 0, 6;
6, 0, 0, 0, 0, 0, 7;
4, 4, 0, 4, 0, 0, 0, 8;
...
		

Crossrefs

Cf. A054523, A000010 (column k=1), A018804 (row sums).

Programs

  • Maple
    A127465 := proc(n,k)
            if n mod k = 0 then
                    k*numtheory[phi](n/k) ;
            else
                    0;
            end if;
    end proc:
    seq(seq(A127465(n,m),m=1..n),n=1..12) ; # R. J. Mathar, Nov 08 2011

Formula

T(n,k) = k*A054523(n,k).

A130030 a(n) = Sum_{d|n} (-1)^omega(n/d) * phi(rad(n/d)) * prime(d).

Original entry on oeis.org

2, 1, 1, 2, 3, 6, 5, 7, 9, 14, 11, 15, 17, 20, 21, 22, 27, 20, 31, 23, 33, 38, 39, 20, 45, 48, 43, 35, 53, 6, 67, 47, 65, 64, 63, 25, 85, 78, 73, 34, 99, 20, 107, 63, 45, 94, 119, 35, 113, 56, 99, 73, 137, 54, 103, 54, 117, 134, 161, -1, 163, 136, 73, 96, 113, 24, 199, 107, 159, 12, 213
Offset: 1

Views

Author

Gary W. Adamson, May 02 2007

Keywords

Comments

Examples

			a(4) = 2 = dot product of row 4 of A129691: (-1, -1, 0, 1) and the first four primes: (2, 3, 5, 7) = (-2, -3, 0, 7) = 2.
		

Crossrefs

Formula

A129691 as an infinite lower triangular matrix * A000040, the primes.
From Ilya Gutkovskiy, Mar 22 2020: (Start)
a(n) = Sum_{d|n} A023900(n/d) * prime(d).
Sum_{k=1..n} a(gcd(n,k)) = prime(n). (End)

Extensions

New name and more terms from Ilya Gutkovskiy, Mar 22 2020

A228094 Triangle starting at row 3 read by rows of the number of permutations in the n-th Dihedral group which are the product of k disjoint cycles, d(n,k), n >= 3, 1 <= k <= n.

Original entry on oeis.org

2, 3, 1, 2, 3, 2, 1, 4, 0, 5, 0, 1, 2, 2, 4, 3, 0, 1, 6, 0, 0, 7, 0, 0, 1, 4, 2, 0, 5, 4, 0, 0, 1, 6, 0, 2, 0, 9, 0, 0, 0, 1, 4, 4, 0, 0, 6, 5, 0, 0, 0, 1, 10, 0, 0, 0, 0, 11, 0, 0, 0, 0, 1, 4, 2, 2, 2, 0, 7, 6, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 1
Offset: 3

Views

Author

Robert A. Beeler, Aug 09 2013

Keywords

Comments

The multivariable row polynomials give n times the cycle index for the Dihedral group D_n, called Z(D_n) (see the MathWorld link with the Harary reference). For example, 12*Z(D_6) = 2*(y_6)^1 + 2*(y_3)^2 + 4*(y_2)^3+3*(y_1)^2*(y_2)^2 + 1*(y_1)^6.

Examples

			Triangle begins
   2, 3, 1;
   2, 3, 2, 1;
   4, 0, 5, 0, 1;
   2, 2, 4, 3, 0,  1;
   6, 0, 0, 7, 0,  0, 1;
   4, 2, 0, 5, 4,  0, 0, 1;
   6, 0, 2, 0, 9,  0, 0, 0, 1;
   4, 4, 0, 0, 6,  5, 0, 0, 0, 1;
  10, 0, 0, 0, 0, 11, 0, 0, 0, 0, 1;
   4, 2, 2, 2, 0,  7, 6, 0, 0, 0, 0, 1;
   ...
		

References

  • Robert A. Beeler, How to Count: An Introduction to Combinatorics and Its Applications, Springer International Publishing, 2015. See Theorem 8.4.12 at pp. 246-247.
  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, Academic Press, 1973, p. 37.

Crossrefs

Programs

  • Mathematica
    d[n_,k_]:=If[Divisible[n,k],EulerPhi[n/k],0]+If[OddQ[n]&&k==(n+1)/2,n,If[EvenQ[n]&&(k==n/2||k==(n+2)/2),n/2,0]]; Table[d[n,k],{n,3,12},{k,n}]//Flatten (* Stefano Spezia, Jun 26 2023 *)

Formula

d(n,k) = A054523(n,k) + d'(n,k), where: If n is odd, then d'(n,k)= n when k=(n+1)/2 and d'(n,k)=0 otherwise. If n is even, then d'(n,k)=n/2 when k=n/2, (n+2)/2 and d'(n,k)=0 otherwise.

Extensions

Terms corrected by Stefano Spezia, Jun 30 2023

A366444 Triangle read by rows: T(n,k) = phi(n/k)*A023900(k) if k divides n, T(n,k) = 0 otherwise (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 1, -1, 2, 0, -2, 2, -1, 0, -1, 4, 0, 0, 0, -4, 2, -2, -2, 0, 0, 2, 6, 0, 0, 0, 0, 0, -6, 4, -2, 0, -1, 0, 0, 0, -1, 6, 0, -4, 0, 0, 0, 0, 0, -2, 4, -4, 0, 0, -4, 0, 0, 0, 0, 4, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, 4, -2, -4, -2, 0, 2, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Mats Granvik, Oct 12 2023

Keywords

Comments

Sum_{k=1..n} T(n,k) = A063524(n).

Examples

			{
{1}, = 1
{1, -1}, = 0
{2, 0, -2}, = 0
{2, -1, 0, -1}, = 0
{4, 0, 0, 0, -4}, = 0
{2, -2, -2, 0, 0, 2}, = 0
{6, 0, 0, 0, 0, 0, -6}, = 0
{4, -2, 0, -1, 0, 0, 0, -1}, = 0
{6, 0, -4, 0, 0, 0, 0, 0, -2}, = 0
{4, -4, 0, 0, -4, 0, 0, 0, 0, 4}, = 0
{10, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10}, = 0
{4, -2, -4, -2, 0, 2, 0, 0, 0, 0, 0, 2} = 0
}
		

Crossrefs

Programs

  • Mathematica
    nn = 12; g[n_] := DivisorSum[n, MoebiusMu[#] # &]; Flatten[Table[Table[If[Mod[n, k] == 0, EulerPhi[n/k]*g[k], 0], {k, 1, n}], {n, 1, nn}]]

Formula

T(n,k) = phi(n/k)*A023900(k) if k divides n, T(n,k) = 0 otherwise (n >= 1, 1 <= k <= n).

A366445 Triangle read by rows: T(n,k) = A023900(n/k)*phi(k) if k divides n, T(n,k) = 0 otherwise (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, -1, 1, -2, 0, 2, -1, -1, 0, 2, -4, 0, 0, 0, 4, 2, -2, -2, 0, 0, 2, -6, 0, 0, 0, 0, 0, 6, -1, -1, 0, -2, 0, 0, 0, 4, -2, 0, -4, 0, 0, 0, 0, 0, 6, 4, -4, 0, 0, -4, 0, 0, 0, 0, 4, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 2, 2, -2, -4, 0, -2, 0, 0, 0, 0, 0, 4
Offset: 1

Views

Author

Mats Granvik, Oct 12 2023

Keywords

Comments

Sum_{k=1..n} T(n,k) = A063524(n).

Examples

			{
{1}, = 1
{-1, 1}, = 0
{-2, 0, 2}, = 0
{-1, -1, 0, 2}, = 0
{-4, 0, 0, 0, 4}, = 0
{2, -2, -2, 0, 0, 2}, = 0
{-6, 0, 0, 0, 0, 0, 6}, = 0
{-1, -1, 0, -2, 0, 0, 0, 4}, = 0
{-2, 0, -4, 0, 0, 0, 0, 0, 6}, = 0
{4, -4, 0, 0, -4, 0, 0, 0, 0, 4}, = 0
{-10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10}, = 0
{2, 2, -2, -4, 0, -2, 0, 0, 0, 0, 0, 4} = 0
}
		

Crossrefs

Programs

  • Mathematica
    nn = 12; g[n_] := DivisorSum[n, MoebiusMu[#] # &]; Flatten[Table[Table[If[Mod[n, k] == 0, g[n/k]*EulerPhi[k], 0], {k, 1, n}], {n, 1, nn}]]

Formula

T(n,k) = A023900(n/k)*phi(k) if k divides n, T(n,k) = 0 otherwise (n >= 1, 1 <= k <= n).

A127374 Triangle, row sums = A029935.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 0, 1, 0, 5, 1, 1, 1, 0, 6, 1, 0, 0, 1, 0, 7, 1, 1, 1, 1, 1, 0, 8, 0, 2, 0, 1, 0, 1, 0, 9, 3, 0, 1, 1, 0, 1, 1, 0, 10, 1, 2, 1, 0, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 12 2007

Keywords

Comments

Row sums = A029935: (1, 2, 4, 5, 8, 8, 12, ...). A127373 = A054521 * A054523

Examples

			First few rows of the triangle:
  1;
  2, 0;
  3, 1, 0;
  4, 0, 1, 0;
  5, 1, 1, 1, 0;
  6, 1, 0, 0, 1, 0;
  7, 1, 1, 1, 1, 1, 0;
  8, 0, 2, 0, 1, 0, 1, 0;
  ...
		

Crossrefs

Formula

A054523 * A054521 as infinite lower triangular matrices.

A127571 Triangle T(n,k) = phi(n/k)*sigma(k) if k divides n, else 0.

Original entry on oeis.org

1, 1, 3, 2, 0, 4, 2, 3, 0, 7, 4, 0, 0, 0, 6, 2, 6, 4, 0, 0, 12, 6, 0, 0, 0, 0, 0, 8, 4, 6, 0, 7, 0, 0, 0, 15, 6, 0, 8, 0, 0, 0, 0, 0, 13, 4, 12, 0, 0, 6, 0, 0, 0, 0, 18
Offset: 1

Views

Author

Gary W. Adamson, Jan 19 2007

Keywords

Examples

			First few rows of the triangle are:
1;
1, 3;
2, 0, 4;
2, 3, 0, 7;
4, 0, 0, 0, 6;
2, 6, 4, 0, 0, 12;
...
		

Crossrefs

Cf. A000203, A000010, A038040 (row sums), A054523.

Formula

T(n,k) = sum_{j=k..n} A054523(n,j)* A130208(j,k), product of the two infinite lower triangular matrices.
T(n,1) = A000010(n).
T(n,n) = A000203(n).

A128980 A054525 * A129691(unsigned).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 5, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Apr 29 2007

Keywords

Comments

Row sums = A070777: (1, 1, 2, 1, 4, 2, 6, 1, 2, 4, ...). A129691 = the unsigned inverse of A054523.

Examples

			First few rows of the triangle:
  1;
  0, 1;
  1, 0, 1;
  0, 0, 0, 1;
  3, 0, 0, 0, 1;
  0, 1, 0, 0, 0, 1;
  5, 0, 0, 0, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 1;
  0, 0, 1, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Formula

Moebius transform of A129691
Previous Showing 31-40 of 40 results.