cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A054593 Number of disconnected labeled digraphs with n nodes.

Original entry on oeis.org

0, 1, 10, 262, 21496, 6433336, 7566317200, 35247649746352, 648839620390462336, 47230175230392839683456, 13617860445102311268975051520, 15577054031612736747163633737901312
Offset: 1

Views

Author

Vladeta Jovovic, Apr 15 2000

Keywords

Crossrefs

The unlabeled case is A054590.
Cf. A003027, A053763 (not necessarily connected), A054592.

Formula

a(n) = 2^(n*(n-1)) - A003027(n).

A327078 Binomial transform of A001187 (labeled connected graphs), if we assume A001187(1) = 0.

Original entry on oeis.org

1, 1, 2, 8, 61, 969, 31738, 2069964, 267270033, 68629753641, 35171000942698, 36024807353574280, 73784587576805254653, 302228602363365451957793, 2475873310144021668263093202, 40564787336902311168400640561084
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2019

Keywords

Comments

Here we consider that there is no nonempty connected graph with one vertex (different from A001187 and A182100).

Examples

			The a(0) = 1 through a(3) = 8 edge-sets:
  {}  {}  {}       {}
          {{1,2}}  {{1,2}}
                   {{1,3}}
                   {{2,3}}
                   {{1,2},{1,3}}
                   {{1,2},{2,3}}
                   {{1,3},{2,3}}
                   {{1,2},{1,3},{2,3}}
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-add(
          k*binomial(n, k)*2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
        end:
    a:= n-> add(b(n-j)*binomial(n, j), j=0..n-2)+1:
    seq(a(n), n=0..18);  # Alois P. Heinz, Aug 27 2019
  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]<=1&]],{n,0,5}]

Formula

a(n) = A182100(n) - n.
a(n) = A287689(n) + 1.

A327367 Number of labeled simple graphs with n vertices, at least one of which is isolated.

Original entry on oeis.org

0, 1, 1, 4, 23, 256, 5319, 209868, 15912975, 2343052576, 675360194287, 383292136232380, 430038382710483623, 956430459603341708896, 4224538833207707658410103, 37106500399796746894085512140, 648740170822904504303462104598943
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Crossrefs

The unlabeled version is A000088(n - 1).
Labeled graphs with no isolated vertices are A006129.
Covering graphs with at least one endpoint are A327227.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          2^binomial(n, 2)-add(b(k)*binomial(n, k), k=0..n-1))
        end:
    a:= n-> 2^(n*(n-1)/2)-b(n):
    seq(a(n), n=0..17);  # Alois P. Heinz, Sep 04 2019
  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#!=Range[n]&]],{n,0,5}]
  • PARI
    b(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*2^binomial(k, 2)); \\ A006129
    a(n) = 2^(n*(n-1)/2) - b(n); \\ Michel Marcus, Sep 05 2019

Formula

a(n) = A006125(n) - A006129(n).

A360603 Triangle read by rows. T(n, k) = A360604(n, k) * A001187(k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 4, 0, 8, 6, 12, 38, 0, 64, 32, 48, 152, 728, 0, 1024, 320, 320, 760, 3640, 26704, 0, 32768, 6144, 3840, 6080, 21840, 160224, 1866256, 0, 2097152, 229376, 86016, 85120, 203840, 1121568, 13063792, 251548592
Offset: 0

Views

Author

Peter Luschny, Feb 20 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0,       1;
[2] 0,       1,      1;
[3] 0,       2,      2,     4;
[4] 0,       8,      6,    12,    38;
[5] 0,      64,     32,    48,   152,    728;
[6] 0,    1024,    320,   320,   760,   3640,   26704;
[7] 0,   32768,   6144,  3840,  6080,  21840,  160224,  1866256;
[8] 0, 2097152, 229376, 86016, 85120, 203840, 1121568, 13063792, 251548592.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.

Crossrefs

Cf. A006125 Graphs on n labeled nodes, T(n+1, 1) and Sum_{k=0..n} T(n, k).
Cf. A054592 Disconnected labeled graphs with n nodes, Sum_{k=0..n-1} T(n, k).
Cf. A001187 Connected labeled graphs with n nodes, T(n, n).
Cf. A123903 Isolated nodes in all simple labeled graphs on n nodes, T(n+2, 2).
Cf. A053549 Labeled rooted connected graphs, T(n+1, n).
Cf. A275462 Leaves in all simple labeled connected graphs on n nodes T(n+2, n).
Cf. A060818 gcd_{k=0..n} T(n, k) = gcd(n!, 2^n).
Cf. A143543 Labeled graphs on n nodes with k connected components.
Cf. A095340 Total number of nodes in all labeled graphs on n nodes.
Cf. A360604, A360860 (accumulation triangle).

Programs

  • Maple
    T := (n, k) -> 2^binomial(n-k, 2)*binomial(n-1, k-1)*A001187(k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
    # Based on the recursion:
    Trow := proc(n) option remember; if n = 0 then return [1] fi;
    seq(2^binomial(n-k, 2) * binomial(n-1, k-1) * Trow(k)[k+1], k = 1..n-1);
    2^(n*(n-1)/2) - add(j, j = [%]); [0, %%, %] end:
    seq(print(Trow(n)), n = 0..8);
  • Mathematica
    A001187[n_] := A001187[n] = 2^((n - 1)*n/2) - Sum[Binomial[n - 1, k]*2^((k - n + 1)*(k - n + 2)/2)*A001187[k + 1], {k, 0, n - 2}];
    T[n_, k_] := 2^Binomial[n - k, 2]*Binomial[n - 1, k - 1]*A001187[k];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 02 2023, after Peter Luschny in A001187 *)
  • Python
    from math import comb as binomial
    from functools import cache
    @cache
    def A360603Row(n: int) -> list[int]:
        if n == 0: return [1]
        s = [2 ** (((k - n + 1) * (k - n)) // 2) * binomial(n - 1, k - 1) * A360603Row(k)[k] for k in range(1, n)]
        b = 2 ** (((n - 1) * n) // 2) - sum(s)
        return [0] + s + [b]

Formula

T(n, k) = 2^binomial(n-k, 2)*binomial(n-1, k-1) * A001187(k).
Recursion over the rows of the triangle: Set row(0) = [1] where [.] denotes a 0-based list. Assume now all rows(j) for j < n computed, next compute r = [2^binomial(n-k, 2) * binomial(n-1, k-1) * row(k)[k] for k = 1..n-1] and s = 2^(n*(n-1)/2) - Sum(r). Then row(n) = [0] & r & [s], where '&' denotes the concatenation of lists. (See the Python program for an implementation.)
T(n, n) = A001187(n) (connected labeled graphs).
T(n-1, n) = A053549(n-1) for n >= 1 (labeled rooted connected graphs).
T(n, 1) = Sum_{k>=0} T(n-1, k) = A006125(n-1) for n >= 1 (all labeled graphs).
Sum_{k=0..n-1} T(n, k) = A054592(n) for n >= 1 (disconnected labeled graphs).
See additional formulas in the cross-references.

A360860 Accumulation triangle of A360603 read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 4, 8, 0, 8, 14, 26, 64, 0, 64, 96, 144, 296, 1024, 0, 1024, 1344, 1664, 2424, 6064, 32768, 0, 32768, 38912, 42752, 48832, 70672, 230896, 2097152, 0, 2097152, 2326528, 2412544, 2497664, 2701504, 3823072, 16886864, 268435456
Offset: 0

Views

Author

Peter Luschny, Feb 26 2023

Keywords

Examples

			[0] 1;
[1] 0,     1;
[2] 0,     1,     2;
[3] 0,     2,     4,     8;
[4] 0,     8,    14,    26,    64;
[5] 0,    64,    96,   144,   296,  1024;
[6] 0,  1024,  1344,  1664,  2424,  6064,  32768;
[7] 0, 32768, 38912, 42752, 48832, 70672, 230896, 2097152;
		

Crossrefs

Programs

  • Python
    from itertools import accumulate
    def A360860Row(n: int) -> list[int]:
        return list(accumulate(A360603Row(n)))
    for n in range(8): print(A360860Row(n))
Previous Showing 11-15 of 15 results.