A054593
Number of disconnected labeled digraphs with n nodes.
Original entry on oeis.org
0, 1, 10, 262, 21496, 6433336, 7566317200, 35247649746352, 648839620390462336, 47230175230392839683456, 13617860445102311268975051520, 15577054031612736747163633737901312
Offset: 1
A327078
Binomial transform of A001187 (labeled connected graphs), if we assume A001187(1) = 0.
Original entry on oeis.org
1, 1, 2, 8, 61, 969, 31738, 2069964, 267270033, 68629753641, 35171000942698, 36024807353574280, 73784587576805254653, 302228602363365451957793, 2475873310144021668263093202, 40564787336902311168400640561084
Offset: 0
The a(0) = 1 through a(3) = 8 edge-sets:
{} {} {} {}
{{1,2}} {{1,2}}
{{1,3}}
{{2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
-
b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-add(
k*binomial(n, k)*2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
end:
a:= n-> add(b(n-j)*binomial(n, j), j=0..n-2)+1:
seq(a(n), n=0..18); # Alois P. Heinz, Aug 27 2019
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]<=1&]],{n,0,5}]
A327367
Number of labeled simple graphs with n vertices, at least one of which is isolated.
Original entry on oeis.org
0, 1, 1, 4, 23, 256, 5319, 209868, 15912975, 2343052576, 675360194287, 383292136232380, 430038382710483623, 956430459603341708896, 4224538833207707658410103, 37106500399796746894085512140, 648740170822904504303462104598943
Offset: 0
The unlabeled version is
A000088(n - 1).
Labeled graphs with no isolated vertices are
A006129.
Covering graphs with at least one endpoint are
A327227.
-
b:= proc(n) option remember; `if`(n=0, 1,
2^binomial(n, 2)-add(b(k)*binomial(n, k), k=0..n-1))
end:
a:= n-> 2^(n*(n-1)/2)-b(n):
seq(a(n), n=0..17); # Alois P. Heinz, Sep 04 2019
-
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#!=Range[n]&]],{n,0,5}]
-
b(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*2^binomial(k, 2)); \\ A006129
a(n) = 2^(n*(n-1)/2) - b(n); \\ Michel Marcus, Sep 05 2019
A360603
Triangle read by rows. T(n, k) = A360604(n, k) * A001187(k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 4, 0, 8, 6, 12, 38, 0, 64, 32, 48, 152, 728, 0, 1024, 320, 320, 760, 3640, 26704, 0, 32768, 6144, 3840, 6080, 21840, 160224, 1866256, 0, 2097152, 229376, 86016, 85120, 203840, 1121568, 13063792, 251548592
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 2, 2, 4;
[4] 0, 8, 6, 12, 38;
[5] 0, 64, 32, 48, 152, 728;
[6] 0, 1024, 320, 320, 760, 3640, 26704;
[7] 0, 32768, 6144, 3840, 6080, 21840, 160224, 1866256;
[8] 0, 2097152, 229376, 86016, 85120, 203840, 1121568, 13063792, 251548592.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.
Cf.
A006125 Graphs on n labeled nodes, T(n+1, 1) and Sum_{k=0..n} T(n, k).
Cf.
A054592 Disconnected labeled graphs with n nodes, Sum_{k=0..n-1} T(n, k).
Cf.
A001187 Connected labeled graphs with n nodes, T(n, n).
Cf.
A123903 Isolated nodes in all simple labeled graphs on n nodes, T(n+2, 2).
Cf.
A053549 Labeled rooted connected graphs, T(n+1, n).
Cf.
A275462 Leaves in all simple labeled connected graphs on n nodes T(n+2, n).
Cf.
A060818 gcd_{k=0..n} T(n, k) = gcd(n!, 2^n).
Cf.
A143543 Labeled graphs on n nodes with k connected components.
Cf.
A095340 Total number of nodes in all labeled graphs on n nodes.
-
T := (n, k) -> 2^binomial(n-k, 2)*binomial(n-1, k-1)*A001187(k):
for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
# Based on the recursion:
Trow := proc(n) option remember; if n = 0 then return [1] fi;
seq(2^binomial(n-k, 2) * binomial(n-1, k-1) * Trow(k)[k+1], k = 1..n-1);
2^(n*(n-1)/2) - add(j, j = [%]); [0, %%, %] end:
seq(print(Trow(n)), n = 0..8);
-
A001187[n_] := A001187[n] = 2^((n - 1)*n/2) - Sum[Binomial[n - 1, k]*2^((k - n + 1)*(k - n + 2)/2)*A001187[k + 1], {k, 0, n - 2}];
T[n_, k_] := 2^Binomial[n - k, 2]*Binomial[n - 1, k - 1]*A001187[k];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 02 2023, after Peter Luschny in A001187 *)
-
from math import comb as binomial
from functools import cache
@cache
def A360603Row(n: int) -> list[int]:
if n == 0: return [1]
s = [2 ** (((k - n + 1) * (k - n)) // 2) * binomial(n - 1, k - 1) * A360603Row(k)[k] for k in range(1, n)]
b = 2 ** (((n - 1) * n) // 2) - sum(s)
return [0] + s + [b]
A360860
Accumulation triangle of A360603 read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 2, 4, 8, 0, 8, 14, 26, 64, 0, 64, 96, 144, 296, 1024, 0, 1024, 1344, 1664, 2424, 6064, 32768, 0, 32768, 38912, 42752, 48832, 70672, 230896, 2097152, 0, 2097152, 2326528, 2412544, 2497664, 2701504, 3823072, 16886864, 268435456
Offset: 0
[0] 1;
[1] 0, 1;
[2] 0, 1, 2;
[3] 0, 2, 4, 8;
[4] 0, 8, 14, 26, 64;
[5] 0, 64, 96, 144, 296, 1024;
[6] 0, 1024, 1344, 1664, 2424, 6064, 32768;
[7] 0, 32768, 38912, 42752, 48832, 70672, 230896, 2097152;
Comments