cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A049334 Triangle read by rows: T(n, k) is the number of unlabeled connected planar simple graphs with n >= 1 nodes and 0<=k<=3*n-6 edges.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 2, 1, 1, 0, 0, 0, 0, 3, 5, 5, 4, 2, 1, 0, 0, 0, 0, 0, 6, 13, 19, 22, 19, 13, 5, 2, 0, 0, 0, 0, 0, 0, 11, 33, 67, 107, 130, 130, 96, 51, 16, 5, 0, 0, 0, 0, 0, 0, 0, 23, 89, 236, 486, 804, 1112, 1211, 1026, 626, 275, 72, 14, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Planar graphs with n >= 3 nodes have at most 3*n-6 edges.

Examples

			n\k 0  1  2  3  4  5  6  7  8  9 10 11 12
--:-- -- -- -- -- -- -- -- -- -- -- -- --
1:  1
2:  0  1
3:  0  0  1  1
4:  0  0  0  2  2  1  1
5:  0  0  0  0  3  5  5  4  2  1
6:  0  0  0  0  0  6 13 19 22 19 13  5  2
		

Crossrefs

Row sums are A003094.
Column sums are A046091.

Programs

  • nauty
    geng -c $n $k:$k | planarg -q | countg -q # Georg Grasegger, Jul 11 2023

Formula

T(n, n-1) = A000055(n) and Sum_{k} T(n, k) = A003094(n) if n>=1. - Michael Somos, Aug 23 2015
log(1 + B(x, y)) = Sum{n>0} A(x^n, y^n) / n where A(x, y) = Sum_{n>0, k>=0} T(n,k) * x^n * y^k and similarly B(x, y) with A039735. - Michael Somos, Aug 23 2015

A339072 Triangle read by rows: T(n,k) is the number of unlabeled simple 3-connected graphs with n nodes and k edges (n >= 4, ceiling(3*n/2) <= k <= n*(n-1)/2).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 4, 2, 1, 1, 3, 14, 25, 31, 28, 17, 9, 5, 2, 1, 1, 4, 24, 101, 254, 413, 475, 426, 306, 187, 103, 52, 23, 11, 5, 2, 1, 1, 19, 204, 1068, 3348, 7152, 11199, 13683, 13604, 11374, 8203, 5216, 2963, 1536, 737, 333, 144, 62, 25, 11, 5, 2, 1, 1
Offset: 4

Views

Author

Andrew Howroyd, Nov 24 2020

Keywords

Examples

			Triangle begins:
===========================================================
n/k | 6  7  8   9  10 11  12  13  14  15  16 17 18 19 20 21
----+------------------------------------------------------
  4 | 1;
  5 |       1,  1,  1;
  6 |           2,  3, 4,  4,  2,  1,  1;
  7 |                  3, 14, 25, 31, 28, 17, 9, 5, 2, 1, 1;
  8 |                      4, 24 ...
  ...
		

Crossrefs

Row sums are A006290.
Column sums are A338511.

A339071 Triangle read by rows: T(n,k) is the number of unlabeled simple nonseparable (or 2-connected) graphs with n nodes and k edges (n >= 1, n-1 <= k <= n*(n-1)/2).

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 3, 2, 1, 1, 0, 1, 3, 9, 14, 12, 8, 5, 2, 1, 1, 0, 1, 4, 20, 50, 82, 94, 81, 59, 38, 20, 10, 5, 2, 1, 1, 0, 1, 6, 40, 161, 429, 780, 1076, 1197, 1114, 885, 622, 386, 215, 112, 55, 24, 11, 5, 2, 1, 1, 0, 1, 7, 70, 433, 1729, 4796
Offset: 1

Views

Author

Andrew Howroyd, Nov 23 2020

Keywords

Examples

			Triangle T(n,k) begins:
======================================================
n/k | 0  1  2  3  4  5  6  7  8   9  10 11 12 13 14 15
----+-------------------------------------------------
  1 | 0;
  2 |    1;
  3 |       0, 1;
  4 |          0, 1, 1, 1;
  5 |             0, 1, 2, 3, 2,  1,  1;
  6 |                0, 1, 3, 9, 14, 12, 8, 5, 2, 1, 1;
  ...
		

Crossrefs

Row sums are A002218.
Column sums are A010355.
Cf. A054923, A054924, A123534, A339070 (transpose), A339072.

A046742 Triangle of number of connected graphs with k >= 1 edges and n nodes (2 <= n <= k+1).

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 2, 3, 0, 0, 1, 5, 6, 0, 0, 1, 5, 13, 11, 0, 0, 0, 4, 19, 33, 23, 0, 0, 0, 2, 22, 67, 89, 47, 0, 0, 0, 1, 20, 107, 236, 240, 106, 0, 0, 0, 1, 14, 132, 486, 797, 657, 235, 0, 0, 0, 0, 9, 138, 814, 2075, 2678, 1806, 551, 0, 0, 0, 0, 5, 126, 1169, 4495, 8548, 8833, 5026, 1301
Offset: 1

Views

Author

Keywords

Examples

			1;
0 1;
0 1 2;
0 0 2 3;
0 0 1 5 6;
0 0 1 5 13 11;
0 0 0 4 19 33 23;
0 0 0 2 22 67 89 47;
0 0 0 1 20 107 236 240 106;
0 0 0 1 14 132 486 797 657 235;
0 0 0 0 9 138 814 2075 2678 1806 551;
0 0 0 0 5 126 1169 4495 8548 8833 5026 1301;
0 0 0 0 2 95 1454 8404 22950 33851 28908 13999 3159;
0 0 0 0 1 64 1579 13855 53863 109844 130365 93569 39260 7741;
0 0 0 0 1 40 1515 20303 112618 313670 499888 489387 300748 110381 19320;
0 0 0 0 0 21 1290 26631 211866 803905 1694642 2179949 1799700 959374 311465 ...
... (so with 5 edges there's 1 graph with 4 nodes, 5 with 5 nodes and 1 with 6 nodes).
		

Crossrefs

Cf. A002905 (row sums), A008406, A046751, A054923, A054924 (transpose), A001349 (column sums).

Extensions

Data corrected by Sean A. Irvine, Apr 23 2021

A046751 Triangle read by rows of number of connected graphs with n nodes and k edges (n >= 2, 1 <= k <= n(n-1)/2).

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 2, 2, 1, 1, 0, 0, 0, 3, 5, 5, 4, 2, 1, 1, 0, 0, 0, 0, 6, 13, 19, 22, 20, 14, 9, 5, 2, 1, 1, 0, 0, 0, 0, 0, 11, 33, 67, 107, 132, 138, 126, 95, 64, 40, 21, 10, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 23, 89, 236, 486, 814, 1169, 1454, 1579, 1515, 1290, 970, 658, 400, 220, 114
Offset: 2

Views

Author

Keywords

Examples

			1;
0,1,1;
0,0,2,2,1, 1;
0,0,0,3,5, 5, 4, 2,  1,  1;
0,0,0,0,6,13,19,22, 20, 14,  9,  5, 2, 1, 1;
0,0,0,0,0,11,33,67,107,132,138,126,95,64,40,21,10,5,2,1,1;
[ the 4th row giving the numbers of connected graphs with 4 nodes and from 1 to 10 edges ].
		

Crossrefs

See A054924, which is the main entry for this triangle.

Extensions

More terms from Vladeta Jovovic, Apr 21 2000

A001437 Number of connected graphs with n nodes and ceiling(n(n-1)/4) edges.

Original entry on oeis.org

1, 1, 2, 5, 22, 138, 1579, 33366, 1348674, 105925685, 15968704512, 4520384306832, 2402814904220039, 2425664021535713098, 4647586298937784001491, 16787189663016572148130262, 114716901953374968257425111039
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Largest entries in the rows of the table in A054924.

Extensions

More terms from Sean A. Irvine, Jul 24 2012

A076263 Triangle read by rows: T(n,k) = number of nonisomorphic connected graphs with n vertices and k edges (n >= 1, n-1 <= k <= n(n-1)/2).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 5, 4, 2, 1, 1, 6, 13, 19, 22, 20, 14, 9, 5, 2, 1, 1, 11, 33, 67, 107, 132, 138, 126, 95, 64, 40, 21, 10, 5, 2, 1, 1, 23, 89, 236, 486, 814, 1169, 1454, 1579, 1515, 1290, 970, 658, 400, 220, 114, 56, 24, 11, 5, 2, 1, 1, 47, 240, 797, 2075, 4495
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), Oct 03 2002

Keywords

Comments

The index of the T(n,k) in the sequence is ((n-2)^3 - n + 6*k + 8)/6.
T(n,k)=1 for k = n*(n-1)/2-1 and k = n*(n-1)/2 (therefore {1,1} separates sublists for given numbers of vertices (n > 2)).

Examples

			There are 2 connected graphs with 4 vertices and 3 edges up to isomorphy (first graph: ((1,2),(2,3),(3,4)); second graph: ((1,2),(1,3),(1,4))). Index within the sequence is ((4-2)^3 - 4 + 6*3 + 8)/6 = 5.
Triangle begins:
   1;
   1;
   1,  1;
   2,  2,  1,   1;
   3,  5,  5,   4,   2,   1,   1;
   6, 13, 19,  22,  20,  14,   9,  5,  2,  1,  1;
  11, 33, 67, 107, 132, 138, 126, 95, 64, 40, 21, 10, 5, 2, 1, 1;
		

Crossrefs

Row lengths (excluding first row): A000124. Number of connected graphs for given number of vertices: A001349. Number of connected graphs for given number of edges: A002905.
Number of entries in the n-th row is A152947. Row sums give A001349.
Starting each row from k=0 gives A054924, which is the main entry for this triangle.

Programs

  • Mathematica
    NumberOfConnectedGraphs[vertices_, edges_] := Plus @@ ConnectedQ /@ ListGraphs[vertices, edges] /. {True->1, False ->0}
    (* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) Table[Plus @@ ConnectedQ /@ ListGraphs[Vert, i] /. {True -> 1, False -> 0}, {Vert, 8}, {i, Vert - 1, Vert*(Vert - 1)/2}]

Extensions

Corrected by Keith Briggs and Robert G. Wilson v, May 01 2005
Rows 5, 6 & 7 from Robert G. Wilson v, Jun 21 2005
More terms from Keith Briggs, Jun 28 2005
Name corrected by Andrey Zabolotskiy, Nov 20 2017

A054926 Number of connected unlabeled graphs with n nodes and floor(n*(n-1)/4) edges.

Original entry on oeis.org

1, 0, 0, 2, 5, 19, 132, 1579, 33366, 1343120, 105723785, 15968704512, 4520384306832, 2402302590759788, 2425409960013204929, 4647586298937784001491, 16787189663016572148130262, 114715448859703502223876433517
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Formula

a(n) = A054924(n, floor(n*(n-1)/4) ).

Extensions

Description corrected by David Wasserman, Mar 05 2002

A094602 Total number of edges in all connected unlabeled graphs on n nodes.

Original entry on oeis.org

0, 1, 5, 25, 130, 951, 9552, 160220, 4756703, 264964172, 27746801125, 5419696866001, 1964101824992259, 1319988856541150115, 1648566523004692022634, 3838409698542815296758222, 16719797018733808721401666187, 136732968429033400292302529059213
Offset: 1

Views

Author

Vladeta Jovovic, Jun 06 2004

Keywords

Crossrefs

Programs

  • PARI
    \\ See A054923 for G, InvEulerMT.
    a(n)={subst(deriv(InvEulerMT(vector(n, k, G(k,y)))[n]), y, 1)} \\ Andrew Howroyd, Feb 01 2020

Formula

a(n) = Sum_{k=1..binomial(n,2)} k*A054924(n, k). - Andrew Howroyd, Feb 01 2020

Extensions

Terms a(17) and beyond from Andrew Howroyd, Feb 01 2020
Previous Showing 11-19 of 19 results.