cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A211199 Sum of the 16th powers of the decimal digits of n.

Original entry on oeis.org

0, 1, 65536, 43046721, 4294967296, 152587890625, 2821109907456, 33232930569601, 281474976710656, 1853020188851841, 1, 2, 65537, 43046722, 4294967297, 152587890626, 2821109907457, 33232930569602, 281474976710657, 1853020188851842, 65536, 65537, 131072, 43112257
Offset: 0

Views

Author

Jonathan Vos Post, May 11 2012

Keywords

Comments

This is to exponent 16 as A007953 is to exponent 1, A003132 is to exponent 2, and A055013 is to exponent 4.

Examples

			a(14) = 1^16 + 4^16 = 4294967297 = 641 * 6700417.
		

Crossrefs

Programs

A338235 Numbers k such that k + the sum of the 4th powers of the decimal digits of k is a square.

Original entry on oeis.org

20, 47, 104, 113, 228, 255, 333, 544, 632, 743, 1054, 1122, 1518, 1762, 1901, 2071, 3617, 4317, 4432, 4456, 4513, 4557, 4727, 4927, 5000, 5058, 5080, 5173, 5473, 5847, 6047, 6767, 6832, 7247, 7408, 7453, 7487, 7518, 7921, 7997, 8127, 8958, 9208, 9487, 10917
Offset: 1

Views

Author

Will Gosnell, Jan 30 2021

Keywords

Examples

			20 is a member since 2^4 + 0^4 + 20 = 6^2,
47 is a member since 4^4 + 7^4 + 47 = 52^2,
104 is a member since 1^4 + 0^4 + 4^4 = 104 = 19^2,
113 is a member since 1^4 + 1^4 + 3^4 + 113 = 14^2.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,k;
      issqr(n + add(t^4, t=convert(n,base,10)))
    end proc:
    select(filter, [$1..20000]); # Robert Israel, Jan 30 2021

A355708 Irregular triangle read by rows in which row n lists the possible periods for the iterations of the map sum of n-th powers of digits.

Original entry on oeis.org

1, 1, 8, 1, 2, 3, 1, 2, 7, 1, 2, 4, 6, 10, 12, 22, 28, 1, 2, 3, 4, 10, 30, 1, 2, 3, 6, 12, 14, 21, 27, 30, 56, 92, 1, 25, 154, 1, 2, 3, 4, 8, 10, 19, 24, 28, 30, 80, 93, 1, 6, 7, 17, 81, 123
Offset: 1

Views

Author

Mohammed Yaseen, Jul 14 2022

Keywords

Examples

			Triangle begins:
  1;
  1, 8;
  1, 2, 3;
  1, 2, 7;
  1, 2, 4, 6, 10, 12, 22, 28;
  1, 2, 3, 4, 10, 30;
  1, 2, 3, 6, 12, 14, 21, 27, 30, 56, 92;
  1, 25, 154;
  1, 2, 3, 4, 8, 10, 19, 24, 28, 30, 80, 93;
  1, 6, 7, 17, 81, 123;
  ...
		

Crossrefs

Periods of sum of m-th powers of digits iterated: A031176 (m=2), A031178 (m=3), A031182 (m=4), A031186 (m=5), A031195 (m=6), A031200 (m=7), A031211 (m=8), A031212 (m=9), A031213 (m=10).
Sum of m-th powers of digits: A007953 (m=1), A003132 (m=2), A055012 (m=3), A055013 (m=4), A055014 (m=5), A055015 (m=6), A123253 (m=7), A210840 (m=8).

A383349 Numbers that have the same set of digits as the sum of 4th powers of its digits.

Original entry on oeis.org

0, 1, 488, 668, 686, 848, 866, 884, 1346, 1364, 1436, 1463, 1634, 1643, 2088, 2556, 2565, 2655, 2808, 2880, 3146, 3164, 3416, 3461, 3614, 3641, 4136, 4163, 4316, 4361, 4479, 4497, 4613, 4631, 4749, 4794, 4947, 4974, 5256, 5265, 5526, 5562, 5625, 5652, 6134, 6143
Offset: 1

Views

Author

Jean-Marc Rebert, Apr 24 2025

Keywords

Examples

			488 and 4^4 + 8^4 + 8^4 = 8448 have the same set of digits {4,8}, so 488 is a term.
		

Crossrefs

Cf. A052455 (a subsequence).

Programs

  • Mathematica
    q[k_] := Module[{d = IntegerDigits[k]}, Union[d] == Union[IntegerDigits[Total[d^4]]]]; Select[Range[0, 7000], q] (* Amiram Eldar, Apr 24 2025 *)
  • PARI
    isok(k) = my(d=digits(k)); Set(d) == Set(digits(sum(i=1, #d, d[i]^4))); \\ Michel Marcus, Apr 24 2025
    
  • Python
    def ok(n): return set(s:=str(n)) == set(str(sum(int(d)**4 for d in s)))
    print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Apr 24 2025
Previous Showing 21-24 of 24 results.