A231602
Triangular array read by rows: T(n,k) is the number of rooted labeled trees on n nodes that have exactly k nodes with outdegree = 1, n>=1, 0<=k<=n-1.
Original entry on oeis.org
1, 0, 2, 3, 0, 6, 4, 36, 0, 24, 65, 80, 360, 0, 120, 306, 1950, 1200, 3600, 0, 720, 4207, 12852, 40950, 16800, 37800, 0, 5040, 38424, 235592, 359856, 764400, 235200, 423360, 0, 40320, 573057, 2766528, 8481312, 8636544, 13759200, 3386880, 5080320, 0, 362880
Offset: 1
1;
0, 2;
3, 0, 6;
4, 36, 0, 24;
65, 80, 360, 0, 120;
306, 1950, 1200, 3600, 0, 720;
4207, 12852, 40950, 16800, 37800, 0, 5040;
38424, 235592, 359856, 764400, 235200, 423360, 0, 40320;
....0..........0........
....|........./ \.......
....0........0...0......
.../ \.......|..........
..0 0......0..........
T(4,1) = 36. Both of these graphs on 4 nodes have exactly 1 node that has outdegree = 1. There are 12 + 24 = 36 labelings.
-
with(combinat): C:= binomial:
b:= proc(t, i, u) option remember; `if`(t=0, 1,
`if`(i<2, 0, b(t, i-1, u) +add(multinomial(t, t-i*j, i$j)
*b(t-i*j, i-1, u-j)*u!/(u-j)!/j!, j=1..t/i)))
end:
T:= (n, k)-> C(n, k)*C(n-1, k)*k! *b(n-1-k$2, n-k):
seq(seq(T(n, k), k=0..n-1), n=1..10); # Alois P. Heinz, Nov 12 2013
-
nn=8;Table[Table[Drop[Range[0,nn]!CoefficientList[Series[-ProductLog[x/(-1-x+x y)],{x,0,nn}],{x,y}],1][[r,c]],{c,1,r}],{r,1,nn}]//Grid
A055313
Number of labeled rooted trees with n nodes and 12 leaves.
Original entry on oeis.org
13, 745290, 2153888100, 1850107896000, 813987254808000, 233983253596659840, 50146687652338368000, 8684014103185704192000, 1281139242561407305440000, 167044094432657294973120000
Offset: 13
-
[Factorial(n)*(n-12)^2*(n-11)^2*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(9*n^8 - 708*n^7 + 24018*n^6 - 458136*n^5 + 5363513*n^4 - 39369364*n^3 + 176423596*n^2 - 439700816*n + 464486400) / 352423730384732160000: n in [13..25]]; // Vincenzo Librandi, Jul 25 2014
-
Table[n! * (n-12)^2*(n-11)^2*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(9*n^8 - 708*n^7 + 24018*n^6 - 458136*n^5 + 5363513*n^4 - 39369364*n^3 + 176423596*n^2 - 439700816*n + 464486400) / 352423730384732160000,{n,13,25}] (* Vaclav Kotesovec, Jul 25 2014 *)
A055304
Number of labeled rooted trees with n nodes and 3 leaves.
Original entry on oeis.org
4, 140, 3000, 54600, 940800, 16087680, 279417600, 4989600000, 92207808000, 1769511744000, 35321737651200, 733823266176000, 15866448998400000, 356873052856320000, 8344427063132160000, 202660737281114112000
Offset: 4
-
[Factorial(n)*(n-3)*(n-2)*(n-1)*(3*n-8)/144 : n in [4..25]]; // Vincenzo Librandi, Jul 25 2014
-
seq(n!*(n-3)*(n-2)*(n-1)*(3*n-8)/144, n=4..100); # Robert Israel, Jul 25 2014
-
Table[n! * (n-3)*(n-2)*(n-1)*(3*n-8)/144,{n,4,20}] (* Vaclav Kotesovec, Jul 25 2014 *)
A055305
Number of labeled rooted trees with n nodes and 4 leaves.
Original entry on oeis.org
5, 450, 18900, 588000, 15876000, 400075200, 9779616000, 237105792000, 5779453680000, 142845262560000, 3599700616512000, 92818726640640000, 2454539660052480000, 66664716210892800000, 1861170036255129600000
Offset: 5
-
[Factorial(n)*(n-4)^2*(n-3)^2*(n-2)*(n-1)/1152 : n in [5..25]]; // Vincenzo Librandi, Jul 25 2014
-
Table[n! * (n-4)^2*(n-3)^2*(n-2)*(n-1)/1152,{n,5,20}] (* Vaclav Kotesovec, Jul 25 2014 *)
A055306
Number of labeled rooted trees with n nodes and 5 leaves.
Original entry on oeis.org
6, 1302, 101136, 5143824, 210198240, 7593173280, 255415628160, 8252203639680, 261173083691520, 8202954132172800, 257956727815987200, 8172268419809894400, 261973287647034163200, 8524055367713146060800
Offset: 6
-
[Factorial(n)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(15*n^3 - 195*n^2 + 830*n - 1152)/691200 : n in [6..25]]; // Vincenzo Librandi, Jul 25 2014
-
Table[n! * (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(15*n^3 - 195*n^2 + 830*n - 1152)/691200,{n,6,20}] (* Vaclav Kotesovec, Jul 25 2014 *)
A055307
Number of labeled rooted trees with n nodes and 6 leaves.
Original entry on oeis.org
7, 3528, 486864, 39160800, 2357586000, 119409111360, 5426122141440, 230006844587520, 9326497051872000, 367969396354560000, 14295131088292454400, 551514022702420377600, 21263333439482226892800
Offset: 7
-
[Factorial(n)*(n-6)^2*(n-5)^2*(n-4)*(n-3)*(n-2)*(n-1)*(3*n^2-29*n+ 64)/8294400: n in [7..25]]; // Vincenzo Librandi, Jul 25 2014
-
seq(n! * (n-6)^2*(n-5)^2*(n-4)*(n-3)*(n-2)*(n-1)*(3*n^2 - 29*n + 64)/8294400, n=7..100); # Robert Israel, Jul 25 2014
-
Table[n! * (n-6)^2*(n-5)^2*(n-4)*(n-3)*(n-2)*(n-1)*(3*n^2 - 29*n + 64)/8294400,{n,7,20}] (* Vaclav Kotesovec, Jul 25 2014 *)
A055308
Number of labeled rooted trees with n nodes and 7 leaves.
Original entry on oeis.org
8, 9144, 2178000, 270111600, 23449219200, 1635398519040, 98861289246720, 5425893817344000, 278673669001728000, 13673851998782976000, 650477329618365849600, 30322668859342072012800
Offset: 8
-
[Factorial(n)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(63*n^5- 1890*n^4+22365*n^3-130186*n^2+371672*n-414720)/14631321600: n in [8..25]]; // Vincenzo Librandi, Jul 25 2014
-
Table[n! * (n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(63*n^5 - 1890*n^4 + 22365*n^3 - 130186*n^2 + 371672*n - 414720)/14631321600,{n,8,20}] (* Vaclav Kotesovec, Jul 25 2014 *)
A055309
Number of labeled rooted trees with n nodes and 8 leaves.
Original entry on oeis.org
9, 22950, 9236700, 1731510000, 213034536000, 20154167953920, 1599866940672000, 112412172128256000, 7240640845838400000, 437993205197708160000, 25315591135036262860800
Offset: 9
-
[Factorial(n)*(n-8)^2*(n-7)^2*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(9*n^4 - 234*n^3 + 2211*n^2 - 8938*n + 12960)/234101145600 : n in [9..25]]; // Vincenzo Librandi, Jul 25 2014
-
Table[n! * (n-8)^2*(n-7)^2*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(9*n^4 - 234*n^3 + 2211*n^2 - 8938*n + 12960)/234101145600,{n,9,20}] (* Vaclav Kotesovec, Jul 25 2014 *)
A055310
Number of labeled rooted trees with n nodes and 9 leaves.
Original entry on oeis.org
10, 56210, 37621320, 10493357160, 1803842280240, 228599313742800, 23567044281580800, 2099312576058297600, 168119161594140556800, 12440787291129176179200, 867641306901247726848000
Offset: 10
-
[Factorial(n)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(135*n^7 - 7245*n^6 + 164745*n^5 - 2054535*n^4 + 15148840*n^3 - 65892420*n^2 + 156108464*n - 154828800)/505658474496000: n in [10..25]]; // Vincenzo Librandi, Jul 25 2014
-
Table[n! * (n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(135*n^7 - 7245*n^6 + 164745*n^5 - 2054535*n^4 + 15148840*n^3 - 65892420*n^2 + 156108464*n - 154828800)/505658474496000,{n,10,20}] (* Vaclav Kotesovec, Jul 25 2014 *)
A055311
Number of labeled rooted trees with n nodes and 10 leaves.
Original entry on oeis.org
11, 135036, 148478616, 60841500720, 14441439612600, 2425616445732480, 321683306528263680, 36020400612748231680, 3559225274902019923200, 320000251320623922048000, 26762519467151924853196800
Offset: 11
-
[Factorial(n)*(n-10)^2*(n-9)^2*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(15*n^6 - 735*n^5 + 14715*n^4 - 153617*n^3 + 878862*n^2 - 2601592*n + 3096576) / 10113169489920000: n in [11..25]]; // Vincenzo Librandi, Jul 25 2014
-
Table[n! * (n-10)^2*(n-9)^2*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(15*n^6 - 735*n^5 + 14715*n^4 - 153617*n^3 + 878862*n^2 - 2601592*n + 3096576)/10113169489920000,{n,11,20}] (* Vaclav Kotesovec, Jul 25 2014 *)
Comments