cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 53 results. Next

A303373 Numbers of the form a^3 + b^6, with integers a, b > 0.

Original entry on oeis.org

2, 9, 28, 65, 72, 91, 126, 128, 189, 217, 280, 344, 407, 513, 576, 730, 737, 756, 793, 854, 945, 1001, 1064, 1072, 1241, 1332, 1395, 1458, 1729, 1792, 2060, 2198, 2261, 2457, 2745, 2808, 2926, 3376, 3439, 3473, 4097, 4104, 4123, 4160, 4221, 4312, 4439, 4608, 4825, 4914
Offset: 1

Views

Author

M. F. Hasler, Apr 22 2018

Keywords

Comments

A subsequence of the numbers of the form a^3 + b^2, A055394.
Although it is easy to produce many terms of this sequence, it is nontrivial to check whether a very large number is of this form.

Examples

			The first terms are 1^3 + 1^6 = 2, 2^3 + 1^6 = 9, 3^3 + 1^6 = 28, 4^3 + 1^6 = 65, 2^3 + 2^6 = 72, 3^3 + 2^6 = 91, 5^3 + 1^6 = 126, 4^3 + 2^6 = 128, ...
		

Crossrefs

Cf. A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4).
Cf. A303372 (a^2 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6).

Programs

  • PARI
    is(n,k=3,m=6)=for(b=1,sqrtnint(n-1,m),ispower(n-b^m,k)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
    A303373_vec(L=10^5,k=3,m=6,S=List())={for(a=1,sqrtnint(L-1,m),for(b=1,sqrtnint(L-a^m,k),listput(S,a^m+b^k)));Set(S)} \\ List of all terms up to limit L

A054402 Numbers that are the sum of a positive square and a positive cube in more than one way.

Original entry on oeis.org

17, 65, 89, 108, 129, 145, 225, 233, 252, 297, 316, 388, 449, 464, 505, 537, 548, 577, 593, 633, 730, 737, 745, 792, 793, 801, 873, 1025, 1088, 1090, 1116, 1289, 1304, 1305, 1367, 1412, 1441, 1452, 1529, 1585, 1601
Offset: 1

Views

Author

Henry Bottomley, May 12 2000

Keywords

Examples

			a(1)=17 since 17 = 3^2 + 2^3 = 4^2 + 1^3.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[AppendTo[lst,n^2+m^3],{n,5!}],{m,5!}];lst=Sort[lst]; lst2={};Do[If[lst[[n]]==lst[[n+1]],AppendTo[lst2,lst[[n]]]],{n,Length[lst]-1}];lst2; Take[Union[lst2],123] (* Vladimir Joseph Stephan Orlovsky, Jul 17 2009 *)
  • PARI
    list(lim)=my(v=List(),u=List());for(n=1,sqrtint(lim\1-1), for(m=1, sqrtnint(lim\1-n^2,3), listput(v,n^2+m^3))); v=vecsort(v); for(i=2,#v, if(v[i]==v[i-1], listput(u,v[i]))); Set(u) \\ Charles R Greathouse IV, May 15 2015

A078359 Number of ways to write n as sum of a positive square and a positive cube.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Comments

a(A066650(n))=0, a(A055394(n))>0, a(A078360(n))=1, a(A054402(n))>1.
Earliest entries with a(n)=3 are n=1737, 2089, 2628, 2817. Earliest entries with a(n)=4 are n=1025, 19225, 27289, 29025, 39329, 48025, 54225. Earliest entries with a(n)=5 are n=92025, 540900, 567225, 747225. There are no a(n)>=6 in the range n=1..700000. - R. J. Mathar, Aug 16 2006
a(3375900) = 6 and a(5472225) = 7 are the first entries with those values. - Robert Israel, Jun 25 2024, [but see A060835. - Hugo Pfoertner, Jun 26 2024]

Examples

			a(1025)=4, as 1025 = 5^2 + 10^3 = 30^2 + 5^3 = 31^2 + 4^3 = 32^2 + 1^3.
		

Crossrefs

Programs

  • Maple
    interface(prettyprint=0) : A078359 := proc(n) local resul,isq,icu ; resul := 0 ; icu := 1 ; while icu^3 < n do if issqr(n-icu^3) then resul := resul+1 ; fi ; icu := icu+1 ; od ; RETURN(resul) ; end: for n from 1 to 100000 do printf("%d %d ",n,A078359(n)) ; od ; # R. J. Mathar, Aug 16 2006
  • Mathematica
    a[n_] := Which[r = Reduce[x > 0 && y > 0 && n == x^2 + y^3, {x, y}, Integers]; r === False, 0, r[[0]] === And, 1, r[[0]] === Or, Length[r], True, Print["error: ", r]];
    Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Feb 13 2018 *)
  • Python
    from collections import Counter
    from itertools import count, takewhile, product
    def aupto(lim):
      sqs = list(takewhile(lambda x: x<=lim-1, (i**2 for i in count(1))))
      cbs = list(takewhile(lambda x: x<=lim-1, (i**3 for i in count(1))))
      cts = Counter(sum(p) for p in product(sqs, cbs))
      return [cts[i] for i in range(1, lim+1)]
    print(aupto(105)) # Michael S. Branicky, May 29 2021

Formula

G.f.: (Sum_{k>=1} x^(k^2)) * (Sum_{k>=1} x^(k^3)). - Seiichi Manyama, Jun 17 2023

A078377 Number of distinct prime factors of numbers which can be written as sum of a positive square and a positive cube.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 3, 1, 1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 3, 1, 2, 2, 2, 1, 1, 3, 3, 1, 3, 3, 2, 1, 3, 1, 1, 3, 3, 2, 2, 2, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 1, 3, 2, 2, 2, 1, 2, 3, 2, 2, 1, 2, 3, 2, 3, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu[Select[Range[200], Length[Reduce[a^2 + b^3 == # && a > 0 && b > 0, {a, b}, Integers]] > 0 &]] (* Amiram Eldar, Mar 27 2025 *)

Formula

a(n) = A001221(A055394(n)).

A078378 Total number of prime factors of numbers which can be written as sum of a positive square and a positive cube.

Original entry on oeis.org

1, 1, 2, 2, 3, 1, 4, 2, 3, 1, 2, 4, 1, 1, 3, 3, 3, 2, 3, 2, 3, 5, 1, 3, 5, 2, 1, 2, 4, 1, 5, 1, 2, 4, 1, 7, 2, 2, 2, 2, 3, 4, 4, 2, 3, 3, 3, 3, 2, 2, 4, 4, 1, 4, 2, 5, 2, 4, 1, 4, 2, 4, 1, 1, 3, 5, 1, 4, 5, 2, 1, 5, 1, 2, 3, 4, 4, 3, 7, 2, 3, 3, 1, 4, 1, 4, 4, 6, 1, 1, 6, 2, 5, 3, 1, 2, 3, 3, 5, 1, 2, 5, 3, 4, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeOmega[Select[Range[200], Length[Reduce[a^2 + b^3 == # && a > 0 && b > 0, {a, b}, Integers]] > 0 &]] (* Amiram Eldar, Mar 27 2025 *)

Formula

a(n) = A001222(A055394(n)).

A055393 Sum of a square and a nonnegative cube in more than one way.

Original entry on oeis.org

1, 9, 17, 36, 64, 65, 89, 100, 108, 129, 145, 196, 225, 233, 252, 289, 297, 316, 388, 441, 449, 464, 505, 512, 537, 548, 576, 577, 593, 633, 729, 730, 737, 745, 784, 792, 793, 801, 841, 873, 1000, 1025, 1088, 1090, 1116, 1225, 1289, 1296, 1304, 1305, 1367
Offset: 1

Views

Author

Henry Bottomley, May 12 2000

Keywords

Examples

			a(12) = 225 since 225 = 6^3 + 3^2 = 5^3 + 10^2 = 0^3 + 15^2.
		

Crossrefs

Programs

  • Mathematica
    nn = 2000; t = Table[0, {nn}]; Do[n = i^2 + j^3; If[0 < n <= nn, t[[n]]++], {i, 0, Sqrt[nn]}, {j, 0, nn^(1/3)}]; Flatten[Position[t, ?(# > 1 &)]] (* _T. D. Noe, Dec 08 2012 *)

Extensions

Extended by T. D. Noe, Dec 08 2012

A066650 Numbers not of the form a^2 + b^3 with a, b > 0.

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 30, 32, 34, 35, 38, 39, 40, 41, 42, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 69, 70, 71, 74, 75, 77, 78, 79, 81, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 95, 96, 97, 98, 99
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 17 2001

Keywords

Crossrefs

Cf. A066649. Complement of A055394.

Programs

  • Mathematica
    q[n_] := Length[Reduce[a^2 + b^3 == n && a > 0 && b > 0, {a, b}, Integers]] == 0; Select[Range[100], q] (* Amiram Eldar, Mar 20 2025 *)

A078360 Numbers having a unique representation as sum of a positive square and a positive cube.

Original entry on oeis.org

2, 5, 9, 10, 12, 24, 26, 28, 31, 33, 36, 37, 43, 44, 50, 52, 57, 63, 68, 72, 73, 76, 80, 82, 91, 100, 101, 113, 122, 126, 127, 128, 134, 141, 148, 150, 152, 161, 164, 170, 171, 174, 177, 185, 189, 196, 197, 204, 206, 208, 217, 220, 223, 226, 232, 241, 246, 257
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Examples

			10 is a term, as 10 = 3^2 + 1^3 and all other sums of positive squares and positives cubes are not equal 10.
17 is not a term, as 17 = 3^2 + 2^3 = 4^2 + 1^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300], Length[Solve[a^2 + b^3 == # && a > 0 && b > 0, {a, b}, Integers]] == 1 &] (* Amiram Eldar, Mar 27 2025 *)

Formula

A078359(a(n))=1.

A078379 Minimum exponent in prime factorization of numbers which can be written as sum of a positive square and a positive cube.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Min[FactorInteger[#][[;; , 2]]] & /@ Select[Range[300], Length[Reduce[a^2 + b^3 == # && a > 0 && b > 0, {a, b}, Integers]] > 0 &] (* Amiram Eldar, Mar 27 2025 *)

Formula

a(n) = A051904(A055394(n)).

A078382 Sum of divisors of numbers which can be written as sum of a positive square and a positive cube.

Original entry on oeis.org

3, 6, 13, 18, 28, 18, 60, 42, 56, 32, 48, 91, 38, 44, 84, 93, 98, 80, 104, 84, 126, 195, 74, 140, 186, 126, 90, 112, 217, 102, 280, 114, 186, 312, 128, 255, 176, 204, 192, 180, 266, 372, 300, 192, 294, 324, 260, 360, 240, 228, 320, 399, 198, 504, 312, 434, 256
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1, Select[Range[200], Length[Reduce[a^2 + b^3 == # && a > 0 && b > 0, {a, b}, Integers]] > 0 &]] (* Amiram Eldar, Mar 27 2025 *)

Formula

a(n) = A000203(A055394(n)).
Previous Showing 11-20 of 53 results. Next